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The surface of
crystalline helium-4

A solid that one can produce by simply applying pressure to liquid helium-4
is an excellent medium for studying the appearance of facets, the kinetics of
crystal growth and other fundamental problems of surface physics.

Humphrey J. Maris and Aleksander F. Andreev

Although solid helium was first pro-
duced over 60 years ago, by Willem H.
Keesom at Leiden,’ it is only in the last
few years that physicists have studied
the surface of this solid. They have
discovered that the surface has re-
markable properties of great scientific
interest:

P It is extraordinarily pure chemical-
ly, and can be made isotopically pure
and free of crystal defects.

> Iis growth is easily manipulated (as
the cover of this
magazine indi-
cates) because it is
more a mechani-
cal process than a
thermal process.
In this article we
examine these
properties and ex-
plain the conse-
quent unique op-
portunities that
the helium sur-
face gives us for
studying prob-
lems that are of
general interest
in surface phys-
ics. Most of the
findings that we
discuss come from
the four countries
where research
on the surface of
solid helium is
most active; the
United States, the
Soviet Union (see
figure 1), France
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and Israel.

Helium has a unique phase diagram
because it is the only element for which
liquid is the stable phase at 0 K and
atmospheric pressure. To produce sol-
id helium it is necessary to apply a
pressure sufficient to force the atoms
into a more closely packed arrange-
ment. The properties of both liquid
and solid helium are greatly affected by
the large zero-point kinetic energy of
the helium atoms; this energy is large
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because the atoms are light. The po-
tential energy of the solid—due to the
interatomic forces—is, as for other
elements, less than that of the liquid.
However, because of the more open
structure of the liquid (that is, because
the atoms in the liquid are less con-
fined), the zero-point kinetic energy for
the liquid is much smaller than that for
the solid. In helium this difference is
sufficient to make the total energy of
the liguid less than that of the solid,
accounting for the
stable liquid
phase at 0 K. The
pressure required
for freezing He" is
25 bars and that
for freezing He® is
35 bars.

Figure 2 is a
qualitative phase
diagram for He®"
There are three
solid phases:

P Hexagonal
close-packed,
which is the sta-
ble phase at low
temperature

P Body-centered
cubic, which occu-
pies a small re-
gion of the phase
diagram near the
melting curve

» Face-centered
cubic, which oc-
curs at high pres-
sure and is not in-
cluded in figure 2.

Figure 1
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Phase diagram of He®, not to scale. The pressure at the critical point is 2.3 bars and the
temperature is 5.2 K. Note that at low temperatures the freezing pressure is almost

independent of temperature.

The liquid phase is divided into helium
I, which is a fairly normal liquid, and
helium II, which is superfluid. The
boundary between these liquid phases
is called the A line; it is at 1.8 K when
the pressure is near that required for
freezing and is at 2.2 K when the
pressure is near zero. In contrast to all
other elements, helium has a phase
diagram with no triple point where
liquid, solid and gas phases coexist.
Because pressure is required to pro-
duce solid helium, it is impossible to
produce a “free surface” of the solid
phase—a boundary between the solid
and the gas. Thus, when we talk in this
article about the surface of solid heli-
um, we always mean the interface
between the solid and liquid phases.

Why study the He surface?

One can prepare liquid helium with
an almost complete absence of impuri-
ties, because all other elements freeze
out at higher temperatures. There are
techniques available to reduce the con-
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Figure 2

centration of the He® isotope in the
liquid to below 1 part in 10'%. Thus, if
one produces the solid by applying
pressure to the liquid, the liguid-solid
surface will be essentially free of im-
purities. One can grow high-quality
crystals of the solid, and the high
mobility of the atoms in the solid phase
enables one to anneal these crystals to
reduce the density of dislocations.
The extreme cleanliness of the solid
helium surface makes the study of the
liquid-solid interface an attractive
field of research. However, at tempera-
tures below about 1 K there are addi-
tional reasons for studying this inter-
face. For ordinary substances, when a
crystal is grown from the liquid phase,
the latent heat of fusion is liberated at
the interface, producing a local rise in
temperature. For growth to proceed
this heat has to be conducted away,
through either the liquid or the solid.
The growth rate of the crystal is thus
controlled primarily by heat conduc-
tion in the bulk phases; the actual
kinetic processes that occur at the
interface are of secondary importance,
and can be studied only in especially
favorable situations.? For helium the
situation is different in two important
respects: First, the superfluid has an

extremely high thermal conductivity,
so heat generated at the interface is
removed very rapidly. Second, at tem-
peratures below about 1 K the entro-
pies of both the liquid and the solid
phase are very small. Thus the latent
heat of fusion is almost zero and, by the
Clausius-Clapeyron equation, the
freezing pressure is practically inde-
pendent of temperature. As a result,
we should consider freezing to be essen-
tially a mechanical process, rather
than a thermal process as it is for
ordinary materials.

The combined effect of high thermal
conductivity and low latent heat is that
the growth of a helium crystal is
limited primarily by processes occur-
ring at the interface, making the kinet-
ics of growth relatively easy to study.

Crystal growth rate

The rate v, at which a crystal grows
is a function of the difference Au
between the chemical potentials u; and
. of the liquid and solid phases. The
growth coefficient K is defined by

v, = KAu

The growth coefficient gives informa-
tion about the nature of the surface. A
crystal surface may be either flat and
smooth on an atomic scale—a facet—or
rough. A rough surface will have a
high growth coefficient because it will
have many places where an extra atom
can be added. Growth is difficult for a
smooth surface because atoms can be
added only by the nucleation of an
entirely new layer of atoms or by spiral
growth around screw dislocations that
intersect the surface. This leads natu-
rally to the question, is the surface of
solid helium at low temperatures rough
or smooth? The general idea that at
low temperatures all systems should
tend toward highly ordered states sug-
gests that the surface should be
smooth. On the other hand, Andreev
and Aleksander Parshin argued that
even at zero temperature, the quantum
mechanical zero-point motion of the
atoms at the surface may be sufficient
to destroy the facets and turn them into
rough surfaces.® We will discuss the
validity of this idea later.

Andreev and Parshin also put for-
ward the radical idea that the growth
coefficient of a rough surface at zero
temperature should become infinite.



This prediction implies that there can
be steady-state growth of the interface
even in the absence of a chemical
potential difference. Their idea was
based on a specific model of the inter-
face. As figure 3 indicates, a rough
surface has many steps running across
it, and these steps contain kinks —they
are not straight. Andreev and Parshin
argued that these kinks should act as
elementary excitations and propagate
freely across the surface. Because a
moving kink transfers mass from the
liquid to the solid, freely propagating

- kinks correspond tfo a stationary state

of the system in which the solid grows
without any dissipation at the interface
and without any difference between

the chemical potentials of the liquid

and the solid.
Andreev and Parshin predicted that
because of the very high growth coeffi-

 cient the surface of solid helium should
1 feature a new type of wave that cannot

v B8 cwy,

exist at ordinary interfaces. Figure 4
shows this wave schematically. Con-
sider a solid surface that initially has
hills and valleys and is at rest (figure
4a). To lower the surface energy, which
isproportional to the area of the curved

. surface, and the gravitational energy,
. which is lowest for a horizontal surface,
. the peaks of the solid begin to melt and
¢ the liquid in the valleys begins to
. freeze. The surface of the solid quickly
; becomes flat (figure 4b). However, at
» this stage currents are still flowing in
. the liquid due to the material that
. melted, and the inertia of these cur-
; rents causes the melting and freezing
. Woovershoot (figure 4c). Recall that the
. liquid is superfluid so that the currents
+ are not damped by viscosity. The cycle
i zhen repeats itself, giving a wave mo-
. tion,

These waves, called melting-freezing

Waves, were observed in 1979 by Kon-

stantin Keshishev, Parshin and Alek-

sei Babkin.* The waves can be genera-
 ted “professionally” by displacing a
- Point on the surface by an electric field,

Orin a more amateurish way by kicking

 the cryostat! Figure 5 shows photo-

. Eraphs of waves obtained by the second
- method. Note that these waves are
different from the well-known Ray-

leigh waves that propagate on the

_ sqrfaces of ordinary solids. In a Ray-
leigh wave, atoms in the region of the

solid near the surface move in elliptical

Steps and kinks on the surface of a crystal. When the kinks move in the direction of the

colored arrows, atoms are transferred from the liquid to the solid.

orbits; in a melting—freezing wave,
atoms in the solid do not move at all
except when they melt and enter the
liquid, as indicated in figure 4.

Limits on interface motion. The fre-
quencies used in the first experiments
with melting-freezing waves ranged up
to about 3 kHz. It seemed remarkable
that a crystal could melt and freeze in a
reversible and nearly dissipationless
way on such a short time scale. How-
ever, it now appears that melting and
freezing can occur up to much higher
frequencies. Bernard Castaing, Sebas-
tien Balibar and Claude Laroche®
showed thisin experiments at the Ecole
Normale Supérieure in Paris using
ultrasonics to study the motion of the
surface at 10° Hz. Since then, several
groups® have studied melting and freez-
ing at frequencies up to 10'° Hz. Their
experiments show that the high mobil-
ity of the interface persists even at that
frequency.

In addition to considering the maxi-
mum frequency with which the inter-
face can move, we may also ask about
the maximum velocity of growth. In a
recent experiment at Brown Universi-
ty, Michael Graf and Maris” grew solid
helium crystals at rates as high as 1200
cm/sec. For growth velocities up to a
critical value v, of about 500 cm/sec,
the growth remains ideal—that is, the
chemical potential difference Au re-
quired to drive the growth is extremely
small. Above the critical velocity the
growth process rapidly becomes much
more dissipative of energy, just as the
flow of superfluid helium through a
tube does above a critical velocity.

The microscopic origin of the eritical
velocity for the surface of solid helium
is not yet known. However, it is clear
on very general grounds that a critical
velocity must exist. At the most funda-

Figure 3

mental level we can regard the growth
of solid helium as the deformation of
the quantum state of the system from a
liquid to a solid configuration. When
this deformation proceeds slowly, the
system will remain in the ground state,
while the character of this state
changes from liquid to solid. Above a
certain rate, however, nonadiabatic
processes will begin to occur with
appreciable probability, and the
growth process will be dissipative and
irreversible.

At finite temperatures the thermal
phonons and rotons in the liquid and
solid damp the motion of the interface
and reduce the growth coefficient X.
Several experiments have focused on
this damping, and the way in which the
thermal excitations damp the interface
is fairly well understood.® It is clear
that when a phonon or roton is reflect-
ed from a moving interface it under-
goes a Doppler shift and can therefore
absorb energy from the interface. The
phonons or rotons possibly interact also
with the moving kinks on the interface.
At high temperatures the growth rate
eventually becomes so small that melt-
ing—freezing waves are overdamped
oscillators. Under these conditions,
when the surface is perturbed it simply
relaxes back to a flat and horizontal
configuration, and does not oscillate.
However, even in this case the time the
crystal takes to reach its equilibrium
form is much less than the correspond-
ing time for a crystal of an ordinary
material.

Facets

Our discussion so far has focused on
atomically rough surfaces. Experi-
ments at low temperatures show that
the surface of a helium crystal consists
of both rough and smooth (faceted)
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Explanation of melting—freezing waves. a: A solid surface with mountains and valleys.
b: The mountains melt and the liquid in the valleys freezes, producing a flat surface_, The
inertia of the currents (arrows) in the liquid causes the system to overshoot, producing the
shape shown in €. The system then reverses its motion and returns to the configuration
shown in a. Figure 4

regions. The way in which the facets
appear and grow is of great interest,
and was first studied in a series of
experiments in Paris by Balibar and his
coworkers and in Haifa by the group of
Steven Lipson and the late Judah
Landau.

At temperatures above 1.28 K the
entire surface of a helium crystal is
rough. Below this temperature, which
we call 7., facets appear normal to the
¢ axis of the crystal.” In the standard
notation for hexagonal crystals these
are (0001) faces. These facets grow as
the temperature is lowered. At a tem-
perature 7, of about 1.0 K new facets
appear on a set of six faces perpendicu-
lar to the ¢ axis. These faces are (1100)
surfaces. At a temperature 7. of about
0.36 K a third type of facet appears'” on
faces that are of orientation (1101).
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The cover shows helium crystals at a
temperature below T.. The three dif-
ferent types of facet are visible. The
temperatures T,, T, and 7. at which
faces of the crystal change from smooth
to rough as the temperature is raised
are called roughening temperatures.

At the phenomenological level, the
existence or nonexistence of facets is
determined by the way in which the
surface free energy varies with the
orientation of the erystal surface. The
simplest case to calculate is the ther-
modynamic equilibrium shape of a
crystal in the absence of gravity; this
approximation is reasonable for small
crystals. The surface free energy F. of
a crystal is

7= [a(mds

The integral is over the surface of
normal i, and «(f) is the free energy
per unit area for that surface. At
equilibrium the crystal takes on a
shape such that its free energy F, is
minimized subject to the constraint
that the total volume of the crystal has
a certain value. One can solve this
variational problem geometrically by
means of the Wulff construction, a
geometrical algorithm that yields the
shape of the lowest-energy crystal?
This construction shows that in gen-
eral, if the surface free energy a is a
smoothly varying function of the orien-
tation n, the surface of the crystal will
be rounded and there will be no facets.
Facets occur when the surface free
energy a(f) has a minimum value for
some particular surface orientation
and increases rapidly when one goes
away from this orientation—that is,
when a polar plot of the surface free
energy a(n) has a cusp in some direc-
tion.

We can also view the roughening
transition at a more microscopic level,
in terms of fluctuations occurring at
surfaces. At 0 K a facet is perfectly
ordered and smooth. As the tempera-
ture is raised, thermal fluctuations give
rise to vacancies in the surface layer;
occasional extra atoms are also added
to the surface. The numbers of these
vacancies and extra atoms increase
until at the roughening temperature
Ty the long-range order of the surface
disappears.'!

One can view the same transition
from the high-temperature side, consid-
ering what happens when a rough
surface is cooled toward Ty . Becauseof
the high mobility of a rough surface,
the fluctuations in this case will be
thermal melting-freezing waves.
There is a competition between these
fluctuations, which tend to delocalize
the interface, and the periodic poten-
tial of the solid normal to the interface,
which favors an interface anchored toa
high-symmetry plane of the solid
When the temperature is lowered to
the roughening temperature Ty, the
periodic potential wins and the surface
becomes pinned.

Near the roughening temperature
the shape of the crystal exhibits critical
behavior. At Ohio State University,



Ciriyam Jayaprakash, William Saam
and Stephen Teitel have shown that
the same critical properties appear in a
wide class of interface models.'? The
three most important of these proper-
ties are the following:

P The curvature of the surface below
the roughening temperature 7, is zero
and above the transition jumps to a
finite value given by

a¥p, —p) (P, — Py)why Topy (1)

Here a is the spacing of crystal planes
parallel to the facet plane, p, and p, are
the densities of solid and liquid and
(P, — Py) is the pressure of the liquid
above the equilibrium freezing pres-
sure P; for a flat interface at the same
temperature. This jump is the analog
of the jump in superfluid density that
occurs at the Kosterlitz-Thouless tran-
sition in thin superfluid films (see the
article by William Glaberson and
Klaus Schwarz on page 54).

P As the temperature increases fo-
ward the roughening temperature Ty
from below, the length L of a facet
tends to zero according to the law

L o« exp] — A/(Tg — T)7

Here 4 is a constant.

> Consider a facet that is in the plane
2 = z,. At the boundary between the
facet and the rough surface surround-
ing it, there is no discontinuity in the
orientation of the surface. Theory pre-
dicts that the surface at a distance r
outside the edge of the facet is de-
seribed by

Bré? (2)
The coefficient B is temperature depen-
. dent.

Advantages of helium. The above re-
sults are general, and so should apply to
other crystal surfaces as well as to
helium. However, for the reasons we
hav? discussed already, the critical be-
hgwor near a roughening transition
Wwillbe very hard to observe for ordinary
crystals. Because of their significant
. latent heat of fusion, ordinary crystals
| takeavery long time to reach the shape
that‘is characteristic of true thermody-
namic equilibrium—the shape that
. Minimizes the surface energy.

This problem is greatly reduced for
helium at low temperatures, and exper-

z2 =2

Melting-freezing waves on the surface of
solid helium. The top photo shows the surface
at rest. The next photo shows the surface
after the cryostat was tapped. The last two
photos show progressive damping of the
waves. (Photographs courtesy of Konstantin
Keshishev.) Figure 5

imenters have already carried out some
tests of the theory. Figure 6 shows an
example: the curvature of the solid-
helium surface, normalized by the theo-
retical value (equation 1) above the
roughening temperature 7y, as mea-
sured by Etienne Wolf and his collabor-
ators at the Ecole Normale in Paris.'?
One can see a jump that is close to the
expected magnitude. Although the
crystal does take on the equilibrium
shape fairly quickly, these measure-
ments are still very difficult to make.
The changes in shape that occur at the
roughening temperature are small, and
they occur only in a small region of the
crystal surface. For example, the jump
in curvature occurs at just one point. A
curvature measurement always probes

a finite area of the surface, and hence -

tends to smear out the transition.
Nevertheless, it is likely there will be
more accurate tests of the predicted
critical behavior in the next year or
two.

There should also be critical behav-
ior of the dynamic properties of the
interface, such as the growth coeffi-
cient K. At temperatures far below the
roughening temperature, the growth
coeflicient is much smaller for a facet
than for a rough surface. For a facet
there are two possible growth mecha-
nisms to consider: The first is the well-
known “spiral” growth around screw
dislocations that intersect the surface.
This appears to be the dominant
growth mechanism'® at temperatures
below 0.5 K. In this temperature range
the growth rate decreases as the tem-
perature goes up. It isbelieved that the
growth rate decreases with tempera-
ture because phonons and rotons col-
lide with the steps, limiting the velocity
with which the steps move around the
screw dislocations. The other growth
mechanism is the two-dimensional nu-
cleation of new solid layers. If we
assume that this is a thermally activat-
ed process, the growth rate due to this
mechanism will increase with increas-
ing temperature. As the temperature
increases through the roughening tem-
perature there must be a transition
from this type of growth to the growth
characteristic of a rough surface. The
results of experimental studies of this
transition are in agreement with a
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renormalization-group theory for the
growth coefficient in this region.'”

Only three faceting transitions have
been observed so far. The equilibrium
shape of a solid helium crystal at zero
temperature remains an intriguing
question. In their original paper, An-
dreev and Parshin proposed that quan-
tum Huctuations, or zero-point mo-
tions, could, if large enough, keep some
or all of the surface in a rough state. It
1s now clear from experiments that at a
fairly low temperature such as 0.1 K a
large part of the surface of a helium
crystal is faceted. In addition, a renor-
malization-group calculation shows
that a solid’s periodic potential should
always lead to faceting, regardless of
the strength of quantum fluctuations.'*
Thus, as the solid approaches zero
temperature either the existing facets
should grow to cover the surface com-
pletely or new faceting transitions
should occur on faces of lower symme-
try. However, no new transitions have
been detected by direct visual observa-
tion'”down to 70 mK, and there is clear
evidence from many experiments that
a significant portion of the interface is
still rough in this temperature range.
It would obvicusly be worthwhile to
continue the study of the surface to
much lower temperatures to look for
further transitions and to measure the
rate at which the fraction of the surface
that is rough decreases as the tempera-
ture goes down.

Many of the phenomena we have
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described should also appear in experi-

ments with liquid and solid He®, but
much lower temperatures will be re-
quired. Spin disorder in solid He®
keeps the entropy large down to the
magnetic ordering temperature of
about 1 mK. Below this temperature it
should be possible to propagate melt-
ing—freezing waves, and the study of
these waves and their damping may
give useful information about the mag-
netic state near the surface. Experi-
menters have detected'® only one
roughening transition in He®—at 80
mK—and presumably there are other
transitions to be found at lower tem-
peratures. e

We are grateful to Sebastien Balibar and
David O. Edwards for helpful comments on
the manuscript. This article is based on
work supported in part by the National
Science Foundation.
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