
SUPERSTRINGS
Considering the elementary building blocks
of nature to be strings rather than point particles
allows one to construct consistent quantum theories
that unify gravity with the other known forces.

John H. Schwarz

During the past three years many theoretical physicists
have dedicated themselves to working on superstring
theory. With varying degrees of conviction we believe that
we have at hand for the first time many of the essential in-
gredients for an almost unique quantum theory that gives
a unified description of all elementary particles and the
forces between them. We also believe that this theory is
free from the inconsistencies that have thwarted all
previous attempts to construct a "unified field theory"
that describes gravity together with the strong, weak and
electromagnetic forces. In short, as some popular media
like to put it, we may finally have "the theory of
everything."

Some eminent physicists, however, view the emer-
gence of superstring theory as a serious aberration that is
corrupting a generation of students. They point out that
there is no experimental evidence for superstrings cur-
rently, and claim that there never will be. Have we
introduced a sinister new cult in the world of theoretical
physics? Have many theorists been led astray by a few of
us who wield excessive influence? Or could it be, as I
would like to believe, that superstring theorists are
developing new insights that will influence profoundly our
view of the physical universe?

This article will present the case for superstrings and
outline some of the obstacles that must still be overcome.
A serious study of superstrings requires much modern
mathematics. In fact, superstring theories are stimulat-
ing new developments in mathematics, and a new level of
unification is emerging among particle theory, quantum
gravity and certain branches of modern mathematics as a
result of these developments. But we will settle here for a
nonmathematical description of the results.

A string theory differs from a conventional quantum
field theory in postulating that the elementary constitu-
ents of all matter are strings—one-dimensional curves—
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rather than point particles. The Planck length

J-'P — TT :1.6xlO-33cm

and the Planck mass

MP=g)1/2~2.2xl0-5g
~1.2xlO19GeV/c2

characterize the size of these strings and their excitation
energies, respectively. (See table 1.) Superstring theory
differs from ordinary point-particle theories in important
ways at these scales, but it may be well approximated by
those theories at large distances or low energies. This
extremely small length scale, or large energy scale,
encourages the skeptics to claim that string theory will
never be tested. If the energy available in laboratory
experiments continues to increase by an order of magni-
tude every decade—a rate of increase that advances in
accelerator technology have made possible over the past
few decades—then we must admittedly wait for almost 200
years before we can directly study the Planck scale. But
the Planck scale is necessarily the one relevant to a
unified theory involving gravitation, so this objection
would apply equally well to any other proposal for such a
unification. In any case, as we will discuss, the theory
should also have testable consequences at much lower
energies.

The standard model
A theoretical framework that describes all established
experimental results in elementary-particle physics has
been developed during the past 30 years; it is known in the
trade as the standard model. To motivate our discussion of
superstrings, let us review briefly some of the successes
and limitations of the standard model.

Elementary-particle theorists have ignored the gravi-
tational force between elementary particles until recently
because it is very weak at the distances or energies
explored experimentally. Theories of elementary parti-
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Table 1.

Atoms
Nuclei
Weak scale
Planck scale

Characteristic scales

Size
cm

10-8

10-'3

10"'6
10-33

Excitation energy
eV

10
107

10"
1028

cles that ignore gravity must still be consistent with the
principles of special relativity and of quantum theory.
Quantum field theory is the mathematical framework
that incorporates these two principles in a theoretical
description of elementary particles regarded as point-like
objects.

To be mathematically consistent and theoretically
acceptable, a quantum field theory must be renormaliza-
ble and free from certain anomalies. Renormalizability
means that the calculation of any physically measurable
quantity in the theory gives a finite result in spite of the
divergences that often appear when the quantity is
expanded as an infinite series in the coupling constant.
Anomalies in a field theory are terms that violate the
conservation laws (or gauge invariance) when the theory is
quantized. Many mathematically consistent quantum
field theories are possible, and the standard model is a
particular one selected on phenomenological grounds.

The standard model comprises particles of spin 0, \
and 1 only. Particles of each spin value play a specific role.
Spin-1 particles transmit forces—gluons transmit the
strong force, W and Z bosons the weak force and the
photon the electromagnetic force. Quarks and leptons, the
fundamental constituents of all ordinary matter, have
spin \ . Spin-0 particles, called Higgs scalars, induce
spontaneous symmetry breaking (we will discuss this
later).

Quantum field theories of a special type, called non-
Abelian gauge theories or Yang-Mills theories, underlie
the standard model. These theories are invariant under
certain symmetry transformations of the basic field
variables, whose magnitude may be chosen independently
at each point in space-time. Lie groups provide a
mathematical description of the continuous symmetry
transformations in these theories. Sophus Lie, a Norwe-
gian mathematician, defined the group theoretic proper-
ties of such continuous symmetry transformations in 1869,
and Elie Cartan studied and classified them further. In
the theory of Lie groups, a given finite symmetry
transformation is built up by repeated application of
infinitesimal transformations. A generator defines each
infinitesimal transformation, and the number of linearly
independent generators is called the dimension of the
group. For example, SO(A0, the group of rotations in iV di-
mensions, is generated by infinitesimal rotations in planes
described by pairs of axes; thus it has N(N—l)/2
generators. The group SO(7V) belongs to the "orthogonal"
sequence—one of three infinite sequences that constitute
the "classical" groups. The dimensions of groups in the
other two sequences, called the unitary and symplectic
sequences, are N2 - 1 for N larger than 1 and N(2N +1)
for N larger than or equal to 1, respectively. These three
classes and the five "exceptional" groups—G2, F4, E6, E7
and E«, with dimensions 14, 52, 78, 133 and 248,
respectively—are called simple Lie groups. There is in

addition the one-dimensional Abelian group U(l), which
describes the rotational symmetry of a circle.

Local fields, called Yang-Mills or gauge fields, asso-
ciated with the generators of the Lie group define a gauge
field theory. Spin-1 particles in the standard model are
the quanta of these fields. It is possible to construct a
gauge theory for any combination of simple Lie groups and
U(l) factors. Quantum electrodynamics is a theory based
on a U(l) symmetry. The particular choice employed in
the standard model, SU(3)xSU(2)xU(l), is the minimal
one consistent with the observed particles and couplings.

The gauge fields couple to the fields for quarks and
leptons and transmit forces between them. The eight spin-
1 fields called gluons, which are associated with the eight
generators of the SU(3) subgroup, called the color group,
describe the strong nuclear force, or color force, between
quarks. The quarks come in three colors—red, green and
blue (see table 2)—and the strong interaction transmitted
between them by gluons is described by saying that the
quarks form a three-dimensional representation of the
color group: Quarks of different colors turn into one
another under the action of the color force in exactly the
same way that the components of a complex three-
dimensional vector transform under the action of the
group SU(3). On the other hand, leptons are color
singlets—the lepton wavefunctions are unchanged by the
color SU(3) transformations—and do not feel the color
force. Table 2 lists the members of the "first family" of
quarks and leptons, consisting of up and down quarks, the
electron and the electron-neutrino. As the table indi-
cates, two more families are known. There is no evidence
for a fourth family, but this possibility is not yet
definitively excluded. The SU(2)xU(l) symmetry in the
standard model gives a (partially) unified description of
the electromagnetic and weak forces. The fields associat-
ed with its four generators correspond to the photon,
which transmits the electromagnetic force, and the W*
and Z°, which carry the weak nuclear force. The group
SU(2) does not act independently on the quark doublet in
each family, but there is some "mixing" between families.

The electroweak transformation rules of the quarks
and leptons are quite interesting. The fermions with "left-
handed" polarization transform as doublets and feel the
SU(2) force, whereas the ones with "right-handed" polar-
ization do not, because they transform as singlets. They
all feel the U(l) force. This is where parity violation is
built into the theory. Altogether, counting polarizations,
there are 12 quarks and 3 leptons in a family. Because the
up quarks have charge + % and the down quarks have
charge - V3, the total charge of the 12 quarks is + 2 while
the total charge of the 3 leptons is — 2. That the sum is
zero is important for ensuring that certain anomalies of
the quantum theory cancel.

Each of the symmetries in a gauge theory represents
an exact symmetry of the fundamental equations that
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describe the dynamics of various fields. However, it can
happen that the solution with the lowest energy (the
ground state or vacuum of the theory) does not have the
full symmetry of the equations. In this case, one says that
the symmetry is spontaneously broken. In the standard
model, three of the 12 symmetries are spontaneously
broken. Specifically, the eight generators of the SU(3)
color group and one generator of the U(l) electromagnetic
group correspond to unbroken symmetries. This U(l)
generator corresponds to the photon; it is in fact a linear
combination of a U(l) subgroup of the SU(2) factor and the
U(l) factor itself, the Weinberg angle #w being a measure
of this mixing. The gluons, the photon and, more
generally, spin-1 particles that correspond to unbroken
symmetry generators are massless, whereas the ones that
correspond to spontaneously broken symmetries (W ± , Z°)
acquire mass. Higgs scalars—particles with spin 0—with
suitable self-couplings and interactions with the other
fields are introduced in the standard model to break the
symmetries. Many theorists consider this an unaesthetic
feature of the standard model. The construction gives a
renormalizable quantum field theory, but it is disturbing
that some "fine-tuning" of parameters is required to
achieve the observed hierarchy of mass scales.

Problems with the standard model
Impressive as the success of the standard model is, there is
much that it does not explain. The choice of symmetry
groups and representations is made on phenomenological
grounds; the number of families is similarly chosen.
Several coupling constants (especially those involving the
Higgs fields), quark masses and mixing angles are
parameters whose values may be freely adjusted to fit the
facts. One hopes that many, or maybe even all, of these
features are derivable from more fundamental principles.
A nontrivial extension of the standard model—a deeper
theory that reduces to the standard model at low
energies—is therefore desirable. Moreover, the standard
model is incomplete: It does not include gravity.

There have been attempts to combine general relativi-
ty, viewed as a classical field theory, with the standard
model. But severe problems arise when the resulting
system is interpreted as a quantum theory. In fact, any
quantum mechanical description of gravity necessarily
involves some very subtle conceptual issues. For example,
conventional approaches to quantum theory require
knowing whether two points have a space-like or time-like
separation, but in a theory including gravity this is
determined by the dynamics, and, furthermore, the
answer is presumably only described by a probability
amplitude. Another puzzling question is whether it is
sensible to extend quantum mechanical notions to the
entire universe—introducing a "wavefunction of the
universe," for example, inevitably leads to the bizarre
"many worlds" interpretation of quantum mechanics.

'Ponfs diagram' is o piece of world sheer
representing rhe space-rime history of rwo closed
strings that join. There ore rwo closed strings or
rime 7",, bur only one at a larer rime T2. Figure 1

There is also the disturbing possibility, pointed out by
Stephen Hawking (Cambridge University), that black
holes cause a loss of quantum phase coherence in the
observable universe, in which case a density-matrix
formalism would be required, instead of a pure state
wavefunction.

There are also more mundane issues that can be
investigated in perturbation theory. For example, when
general relativity is treated in isolation or coupled to the
standard model, the Feynman diagrams that describe
various quantum mechanical corrections give divergences
that are not renormalizable. Although not every case has
been studied completely, it is almost certain that all such
theories are nonrenormalizable. From this I conclude that
there is no consistent theory of quantum gravity that
describes the elementary particles as points.

Extensions of the standard model
Grand unification, supersymmetry, extra dimensions of
space—these are some of the more significant theoretical
proposals for going beyond the standard model. Each of
these proposals can be incorporated in an ordinary gauge
field theory, but they all fit naturally into string theories.
I will briefly elaborate upon them in this section.

It seems to be a general principle that any new idea
in elementary-particle physics implies new particles.
(This is true for bad ideas as well as good ones.) Each of
the three proposals to extend the standard model also
implies the existence of new kinds of particles—axions,
fractional electric charges and magnetic monopoles, for
example. (Besides these, the string theory also predicts
string excitations and shadow matter.) That none of
these particles has been observed yet can be understood
as a result of their either being too heavy to be produced
in accelerators or else interacting too weakly to be
observed. However, we may hope to observe some of
them eventually.

Grand unification is a proposal for unifying the
theoretical description of the strong force with that of the
electroweak force. This is achieved by embedding the
color SU(3) symmetry and the electroweak SU(2)xU(l)
symmetry in a larger simple Lie group. This replaces the
standard model with an asymptotically free theory that is
better behaved at short distances. The smallest group that
can accommodate the symmetries of the standard model is
SU(5), and theories based on this symmetry have received
the most attention. Larger groups such as SO(10), E6, E7
and E8 have also been considered. Grand unification has
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Spoce-time point or which two strings interact (b)
is nor unique bur depends on rhe Lorenrz frame;
it is rhe poinr or which rhe rime slice is tangent to
the world sheet. In contrasr, rhe point of
inreracrion between two particles (o) is the same
in all Lorenrz frames. This difference is one
reason why rhere is much more arbirrariness in
rhe construcrion of rheories for inrerocring parricles
rhan rheories for inreracring srrings. Figure 2

had both successes and failures. The successes include a
calculation of sin2#w to about 5% accuracy; grand
unification has also allowed more elegant group theoretic
assignments for classifying the quarks and leptons. The
failures include the prediction of proton decay at a level
that is now excluded experimentally and predictions for
certain mass ratios of quarks and leptons that also do not
agree with the measured values. However, that the
successes of grand unification depend on rather general
features, whereas its failures tend to depend sensitively on
details of the particular model, gives some support to this
proposal. Indeed, there is some evidence that in the
context of string theory the successes survive but the
failures do not.

Supersymmetry is another extension of the symmetry
of the standard model—and one with profound implica-
tions. This symmetry has a somewhat different math-
ematical structure from that of ordinary Lie group
symmetries, whose conserved charges are rotationally
invariant (scalars). Supersymmetry charges, by contrast,
transform under rotations like spin-V2 particles (spinors).
As a consequence, the irreducible representations used to
describe particles contain different spins. In other words,
a supersymmetry transformation "rotates" a particle of,
say, integer spin into a partner particle of half-integer
spin. When successive supersymmetry transformations
are performed, the combined effect includes a space-time

translation. It has been proved that supersymmetry is the
only possible nontrivial extension of the Poincare symme-
try—translations, rotations and Lorentz boosts—of space-
time. It is clearly of fundamental importance to learn
whether nature uses supersymmetry.

Theoretical arguments suggest that divergence can-
cellations in supersymmetric theories could be helpful in
resolving the fine-tuning problem alluded to earlier.
There is no experimental evidence for supersymmetry yet.
If the symmetry is relevant to nature, it must be
spontaneously broken because unobserved partner parti-
cles certainly do not have the same masses as the known
particles. Another reason for taking supersymmetry
seriously is that it plays a central and inescapable role in
string theory. However, our present level of understand-
ing does allow for the possibility that it is completely
broken at the Planck scale, in which case it would not be
observable.

If supersymmetry is the correct solution to the fine-
tuning problem, it should survive in some form down to
the 100-GeV scale characteristic of weak interactions.
Each known particle would then have one or more partner
particles, with masses of the order of 100 GeV. If this is
the case, some supersymmetry particles should be discov-
ered soon, perhaps at the Fermilab collider. The names
and spins of some of these hypothetical particles are listed
in table 3. The experimental discovery of any of these
would ensure a rich spectrum of new particles whose study
could keep the proposed Superconducting Super Collider
busy for a long time and would provide theorists with
crucial guidance in sorting through the possible models.

I have listed in table 3 the spin-2 graviton and its
partner, the spin-3/2 gravitino. The graviton, the quantum
of gravity, is not part of the standard model. It interacts
much too weakly at ordinary energies to be detected.
However, we know that it must have spin 2 because the
space-time metric in general relativity is a symmetric
matrix. This distinguishes gravity from the other forces,
which are mediated by spin-1 particles. Supersymmetric
gravity—supergravity—theories, which contain one or
more gravitinos, have been studied extensively during the
past decade. Gravitinos are gauge particles for supersym-
metry analogous to the spin-1 particles associated with Lie
group symmetries.

The geometry of space-time is determined dynamical-
ly in general relativity. This is also true of string theory,
which is a generalization of general relativity. In this
context, it may be sensible to consider the possibility of
extra dimensions of space; if the dynamics force the extra
dimensions to curl up into a sufficiently small space, the
resulting theory will not be in conflict with the observed
three-dimensionality of the physical world. Remarkably,
this idea goes back to the work in the 1920s of Theodor Ka-
luza and Oskar Klein, who suggested that a fifth dimen-
sion could be used to unify general relativity with
electrodynamics. That scheme is no longer viable, but
generalizations of the idea have been investigated in
recent years as an outgrowth of work in string theory.
These have been studied intensively in the context of
various supergravity theories; an 11-dimensional version
of supergravity was especially fashionable for a few years.
The preferred dimensionality in superstring theories is
ten—nine space and one time—so that six spatial dimen-
sions should curl up, or "compactify."

Three superstring theories
String theory has had an interesting history, but this is not
the place to discuss it in detail. Suffice it to say that ideas
for a string theory first appeared in physics in the late
1960s in attempts by Gabriele Veneziano (now at CERN),
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Yoichiro Nambu (University of Chicago) and many others
to explain the physical origin of some mathematical
features of strongly interacting particles, or hadrons. But
these string theories predicted a massless spin-2 particle
that had no relevance to hadron physics. The late Joel
Scherk (Ecole Normale Superieure, Paris) and I proposed
in 1974 that this difficulty could be turned into a virtue by
using strings of a size on the scale of the Planck length to
describe gravity in unification with the other forces. This
suggestion, we then thought, could overcome the diver-
gences that plagued all attempts to develop a quantum
theory of gravity. But interest in string theories—
especially as candidates for a theory of hadrons—declined
in the mid-1970s as the SU(3) color theory and the
standard model became successful in explaining most
experimental data. The current excitement started with
the discovery—a mathematical discovery, one may call
it—by Michael Green (Queen Mary College, London) and
myself in 1984 that a particular string theory with
space-time supersymmetry, and hence called superstring
theory, is free from anomalies in ten dimensions only
when the internal symmetry group is SO(32) (see PHYSICS
TODAY, July 1985, page 17). I will discuss only superstring
theories in what follows.

I am often asked why we stop at strings and why we do
not consider objects with more than one dimension. It is
extremely difficult to formulate a theory of elementary
extended objects that is consistent with the usual require-
ments—such as unitarity and causality—of quantum
theory. In the case of strings there appear to be a few
schemes that are consistent. It is not known whether
there are any at all for objects that have more than one di-
mension, such as two-dimensional membranes, but it
would be a surprise if there were. The existence of string
theories depends on special features that do not generalize
to higher-dimensional objects.

It is remarkable that the particle spectra of all
classical solutions of the known string theories each
contain exactly one massless spin-2 graviton. Moreover,
this graviton interacts in accord with the dictates of
general covariance, which implies that general relativity
gives a correct description at low energies. And the
Planck length—the length scale characteristic of strings—
arises naturally when we require the gravitational cou-
pling to have the usual Newtonian value. This is the
feature that led Scherk and me to propose that super-
strings might be relevant to quantum gravity.

Strings can occur in two distinct topologies called
open and closed. Open strings are line segments with free
ends, whereas closed strings are loops (with the topology of
a circle) and no free ends. In some theories strings have an
intrinsic orientation (representable by an arrow). The
various quantum mechanical excitations (normal modes)
of the string for each solution of a particular string theory
are interpreted as giving a spectrum of elementary
particles. The excitations may involve rotational and
vibrational degrees of freedom of the string or excitations
of the various "internal" degrees of freedom that reside on
it. The internal degrees of freedom arise from Lie group
symmetries, supersymmetry and so forth. In string
theory, one has a unified view of the rich world of
elementary particles as different modes of a single
fundamental string. String states that have masses much
smaller than the Planck mass are finite in number and
should correspond to observable particles. There are also
an infinite number of modes with masses on the order of or
larger than the Planck mass that are probably not
observable. In general, they are unstable and decay into
the light modes, although there could be some with
magnetic charge, fractional electric charge or some other

Table 2. Quarks and leptons

Quarks
color triplets

Leptons
color singlers

Weak doublets
(left-handed)

/u n u G u B \ / v e \
\dndsdj \e-J

Weak singlers (unuQu0)
(righr-honded) (dndQd0)

Families

red; G, green; B, blue.

exotic property that are stable. Since we are unlikely to be
able to make such superheavy particles, it would be
possible to observe them only if they already exist in
sufficient numbers as remnants of the Big Bang.

Three consistent superstring theories are known. The
type I theory is based on unoriented strings that may be
open or closed. The other two theories are based on
oriented closed strings that differ in internal symmetry;
one of these is referred to as the type II superstring theory
and the other as the heterotic string theory. (The
developers of the heterotic theory point out that "hetero-
sis" means increased vigor due to crossbreeding. This
theory combines features of the superstring theory and
the old bosonic string theory.)

The three theories are completely free of adjustable
dimensionless parameters or any other arbitrariness.
Thus, aside from this threefold choice, there is a complete-
ly unique theory that consistently incorporates quantum
gravity. Of course, additional theories may still be found.
It is also possible that the list will shrink. This could
happen if two of the theories are shown to be equivalent or
if one of them is found to be inconsistent. For example, if
the type I theory turns out to be inconsistent and the other
two theories are equivalent, we would be left with a unique
theory to explain all fundamental physics.

But it is not enough to know the right theory.
Solutions to equations, and not the equations themselves,
provide a mathematical description of natural phenome-
na. To start with, we would want to know the quantum
state of lowest energy and the low-lying excited states in
any theory. It can happen that a theory has many possible
vacuum configurations, or ground states. In that case one
must make an arbitrary (phenomenological) choice to
describe the experimental data—perhaps even adjusting a
number of parameters—despite the underlying theory's
uniqueness. We are faced with precisely this problem in
string theory. A large number of solutions, all theoretical-
ly acceptable, seem possible. It would be disappointing, to
say the least, if the appropriate solution must be chosen
phenomenologically. Thus many string theorists specu-

Table

Particle
Gluon
Phoron
W (1)
Quark
Lepron
Gravitor

3. Supersymmetry particles

(spin)
CD
(1)

(V,)
(V,>

i (2)

Supersymmetry partner (spin)
Gluino (V2)
Phorino (%)
Wino (V2)
Squork (0)
Slepron (0)
Gravirino (%)
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Table 4. Ten-dimensional solutions

Theory

Type 1
Type II
Type II
Hereroric
Hereroric
Hereroric

Symmetry group

5O(32)
—
—

E8xE8

5O(32)
SO(16)xSO(16)

* The generators differ in hondedness.
** The generators have rhe same handedness.

Number of
supersymmetry generators

1
2*
2«*
1
1
0

late that all but one or a few of the solutions will turn out
to be inconsistent or unstable under a more thorough
analysis that does not depend on perturbative expansions.
As far as I can tell, this is only wishful thinking. However,
optimistic conjectures have turned out to be correct on
many previous occasions in this discipline. That math-
ematical "miracles" continue to turn up suggests that
some fundamental features of string theory are not yet
well understood.

In a theory of gravity, characterization of the vacuum
configuration includes knowing the geometry of space-
time. Can we derive the geometry of four-dimensional
Minkowski space or of a realistic cosmology from super-
string theories? There are perturbative classical solutions
to each of the three theories for any space-time dimension-
ality less than or equal to ten. Thus the dimensionality of
space-time is properly regarded as a property of the
solution and not of the theory itself. Many of the solutions
with dimensionality less than ten can be interpreted as
having a ten-dimensional space-time manifold in which
10 — D spatial dimensions form a compact space K, so that
altogether the space-time is a direct product of D-
dimensional Minkowski space and K. However, there are
other classes of solutions with fewer than ten dimensions
that do admit such an interpretation.

The case D = 10 is special in that it is the largest value
possible for any solution. One could say that string theory
"predicts" that the dimensionality of space-time cannot
be more than ten, but this is not a terribly enlightening
statement. Though it would be much more satisfying to
know why space-time has four dimensions, we have not
achieved such an understanding yet. Indeed, each of the
theories admits ten-dimensional solutions that are consis-
tent as far as we can tell. These solutions (listed in table 4)
are certainly not realistic, but they do seem to be of
fundamental importance from a theoretical point of view.
It is a real challenge to find a good theoretical reason to ex-
clude them as potential vacuum configurations.

For fewer than ten dimensions, the number of vacuum
configurations is much larger; enumerating them and
identifying those that could be realistic has become
something of an industry. At the moment the heterotic
theory seems to offer the best prospects for realistic
solutions, but it is not out of the question that the type I or
type II superstring theories could also yield phenomeno-
logically viable solutions.

Will string theory ever be tested? It seems to me that
there are several promising possibilities. First, the theory
should enable us to calculate the properties of elementary
particles at ordinary energies. A great deal of particle
physics data should be calculable if the theory is unique
and its solutions do not permit too much freedom. Some
simple examples suggest that "low energy" phenomena
should not be especially difficult to extract. Second, some

particles with mass on the order of the Planck mass that
were formed early in the Big Bang may have survived to
the present epoch as observable stable entities. Magnetic
monopoles could be one example. Characteristic features
of superstring theory may also be required for an
understanding of the cosmology of the very early universe.
Our present understanding of string theory is not suffi-
cient to allow definitive predictions in this regard, but
with all the brainpower being brought to bear, there is no
reason to be pessimistic about the eventual testability of
the theory. As Edward Witten (Princeton University)
recently noted, general relativity gave rise to various
predictions that seemed quite hopeless to verify when they
were made. Neutron stars, black holes, gravitational
radiation and gravitational lenses may be counted among
these predictions—and there is substantial observational
evidence now for all of them.

String interactions
Interactions between point particles are represented by
Feynman diagrams in the perturbation expansion treat-
ment of a quantum field theory. A trajectory in space-
time, called the world line, describes the history of a
particle's motion; world lines meet and bifurcate to
represent the interactions the particle undergoes. The
sum of the contributions associated with all allowed
diagrams having the chosen initial and final states gives
the complete interaction amplitude for those states. In
particular, the diagrams must include all possible interac-
tions appropriate to the theory in question. The diagrams
can be classified by their topological properties; their
contribution for a particular topology is given by a finite-
dimensional integral. The integrals usually diverge, but
there is a well-defined prescription for extracting finite
results unambiguously in renormalizable theories.

String interactions can be formulated in an analogous
manner. The space-time trajectory of a string is a two-
dimensional surface called the world sheet. Feynman
diagrams are then two-dimensional surfaces with specific
incoming and outgoing strings, and are once again
classified by their topology. The possible world sheet
topologies are more limited in the type II and heterotic
theories than in the type I theory. In the following I will
therefore consider only the type II and the heterotic string
theories. (The basic ideas are essentially the same in the
type I theory.)

The type II and heterotic string theories each have a
single fundamental interaction. It can be depicted by a
portion of the world sheet, called the "pants diagram."
(See figure 1.) When a plane representing a time slice at
time Tj intersects the diagram, one sees two closed strings.
Intersecting the surface with a time slice at time T2
reveals just one closed string. Clearly, at intermediate
times the two closed strings approached each other,
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touched and joined. The reverse process in which one
closed string splits to give two is also allowed.

The pants diagram describes an interaction that
differs in fundamental respects from interactions in point-
particle theories. A point-particle vertex and the pants
diagram are drawn in figure 2. At what space-time point,
we ask in each case, does the interaction that turns two
particles into one take place? We can represent the time
slices corresponding to two observers in distinct Lorentz
frames by lines of constant t or t'. The interaction in the
point-particle theory occurs at a definite space-time point
that all observers will identify unambiguously; in the
string case, on the other hand, the interaction occurs at
the point where the time slice is tangent to the surface,
and this differs from one observer to another.

The interactions in figures 2a and 2b clearly differ
fundamentally. The "manifold" of lines in the point-
particle case is singular at the junction. Arbitrary choices
are possible in the association of interactions with such
vertices. This is part of the reason why ordinary quantum
field theory has so much freedom in its construction. The
string world sheet is a smooth manifold with no preferred
points. That it describes interaction is purely a conse-
quence of the topology of the surface. The nature of the in-

teraction is therefore completely determined by the
structure of the free theory, with none of the arbitrariness
that exists in the point-particle case.

One may describe string world sheets as Riemann
surfaces using techniques of complex analysis. This
means that one can use complex coordinates z and z. A
fundamental feature of string theory is that world sheets
related by a conformal mapping z — f(z) are regarded as
equivalent. Thus only surfaces that are conformally
inequivalent need be included in performing the sum over
distinct geometries. Fortunately the conformally inequi-
valent geometries for each topology can be characterized
by a finite number of parameters, and thus the Feynman
integrals are finite-dimensional.

The topological classification of the Feynman dia-
grams is especially simple in the type II and heterotic
theories. A single integer, the genus g, which is the
number of handles on the surface (see figure 3), charac-
terizes the world sheets. One can represent the external
strings as points on the surface (shown as dots in the
figure) because they are conformally equivalent to tubes
extending off to infinity. The genus corresponds to the
number of loops, or the power of ft, in the perturbation ex-
pansion. It is remarkable that there is just one diagram
at each order of the perturbation expansion, especially as
the number of them in ordinary quantum field theory is
very large indeed.

The convergence properties of the integrals associated
with diagrams in the string theory are also much better.
The properties of multiloop (g> 1) amplitudes are not yet
fully understood. The analysis involves various sophisti-
cated issues at the frontiers of the theory of Riemann
surfaces, algebraic geometry and maybe even number
theory. However, it seems that all the divergences are of
kinds that are well understood and must inevitably be
present. For example, infrared divergences are expected
in any sensible theory containing massless particles in
four dimensions. We know how to deal with them.
Similarly, divergences in amplitudes calculated with
massive external string states are traced to the fact that
the mass is shifted by the interactions. Other divergences,
associated with so-called dilaton tadpoles, are also well
understood and harmless. Most importantly, the kinds of
divergences that result in parameters becoming arbitrary
in renormalized quantum field theories or in amplitudes
becoming completely undefined in nonrenormalizable
field theories have no counterparts in string theory. (See
the box on page 40.)

Remaining challenges
Superstring theory is developing at a breathtaking pace as
more and more clever people join in the enterprise. The
project is indeed an enormously ambitious one, and many
formidable hurdles remain. Determining a complete list
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A renormolizoble quantum
theory of gravity?

Ir may seem
paradoxical rhar
quanrum correc-
tions ro general
relariviry give
nonrenormaliza-
ble divergences,
whereas string
theory, which
agrees with gen-
eral relativity at
low energies, is
nonsingular. The
essential reason
can be traced to
effects ar the

Planck scale that are present in string theory bur not in
general relativity. In particular, rhere is an infinite spectrum of
string modes corresponding ro particles with mosses on the
order of or greater than the Planck mass. These states
contribute as virtual particles in scattering processes to pro-
duce subtle parrerns of cancellations that soften the high-
momentum (ulrravioler) behavior of rhe Feynman integrals.

This cancellation phenomenon is somewhat analogous to
one that has played on important role in rhe recent history of
particle physics. Before rhe discovery of rhe elecrroweak
theory based on the SU(2)xU(1) symmetry, the "four-
fermion theory" was developed to describe, for example,
rhe neutron beta decay

n^p + e" +ve

The four Fermi fields in this theory were taken to interact at a
point. One of the major problems with rhe four-fermion
rheory was rhar ir was not renormolizable and quanrum
mechanical corrections could nor be calculated for ir. There is
no four-fermion interaction in the elecrroweak theory. In-
sreod, beta decay is described by rhe exchange of a virtual
W particle, as depicted in the lower diagram. The two
descriprions agree quire accurarely, since rhe energy in rhe
decay is much less rhan rhe W mass. However, rhe
electroweok rheory is renormalizable, so quanrum mechani-
cal correcrions are well defined in ir. String rheory modifies
rhe multi-graviron inreracrions in general relariviry in an
analogous fashion.

of consistent string theories is one hurdle I have already
mentioned: Three theories are known, but it would be
extremely nice if the number could be reduced to one.
Then we could argue that there is a unique consistent
theory that accounts for all of fundamental physics.

Development of fundamental principles for super-
string theories and a more geometric formulation for them
has attracted a great deal of effort. String theory has had
a peculiar history, to say the least. It is instructive to
compare its development with that of general relativity.
In the case of relativity, Einstein began by formulating
certain far-reaching principles—the equivalence principle
and general covariance—then found their proper math-
ematical embodiment in the language of Riemannian
geometry. This led to dynamical equations and experi-
mental predictions, many of which have been tested and
verified. In string theory, we have not yet identified the
fundamental principles that generalize the equivalence
principle and general coordinate invariance. These must
surely exist, because general relativity is a low-energy
(long-distance) approximation to string theory. Whatever
these principles may be, they are likely to require a new

kind of geometry, perhaps an infinite-dimensional gener-
alization of Riemannian geometry. Some specific sugges-
tions along these lines have been made in the recent
literature, but it is too early to say whether they contain
the ideas we want.

We should be in a good position to answer many
profound questions once the correct geometric formula-
tion of string theory, incorporating the fundamental
principles in a comprehensible form, is achieved. It should
then be possible to study nonperturbative effects and even
to understand why a particular solution with four-
dimensional space-time and the phenomenologically re-
quired symmetries and particles is selected. I do not know
whether this will happen, but I hope it will. It will also be
interesting to study how string theory modifies classical
general relativity at short distances and to investigate
how it resolves some of the profound issues of quantum
gravity.

In a theory without adjustable parameters, any
dimensionless number in nature should be calculable.
Some of these numbers are extremely small. For example,
the mass of the W boson is 17 orders of magnitude below
the Planck mass. Theorists worry about how such an
extremely small number can emerge from calculations.
One suggestion is that the mathematics will lead to a
formula for \og{Mw/MP), which is not so intimidating a
number.

In the case of the cosmological constant, whose
dimensionless value is less than 10~120, we might hope to
identify a symmetry principle that forces it to be exactly
zero. Some theorists consider this the single most
challenging problem in physics. Prior to string theory the
cosmological constant was not calculable, and therefore
the problem could not even be studied.

I am quite confident that we are closing in on a unique
fundamental theory of nature. But it is unrealistic to
expect too much too soon. It will probably take a few
decades of hard work to obtain a satisfactory understand-
ing of what string theory is really all about. Settling this
question will certainly require advances in mathematics,
but the experimental results in the next 10-20 years also
are likely to play an important role in shaping our ideas.

/ am grateful to Patricia Schwarz for suggesting improvements to
this article.
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