continued from page 15

Perhaps if methods for determining distances without using redshift are developed that are very reliable at large distances, we will be able to reliably know the cosmic distance

Any region we can imagine surveying completely in three (or even two) dimensions is so small that the light travel time across it is a small fraction of the age of the universe. Therefore the tests of changes in the geometry of space-time or in the large-scale clustering of galaxies that Shepard proposes would merely show noise. Some studies using narrow, deep "pencil" surveys have been under way for years, trying to accumulate enough data to reliably perform tests related to the ones he proposes, but based on galaxy counts.

Adrian L. Melott University of Kansas Lawrence, Kansas

5/87

Shepard replies: I assume in my proposal that galaxies manifest redshifts determined by their recessional velocities (at the times their observed energies were emitted), that the distances between the galaxies' locations then and Earth now increase monotonically with those redshifts, and that galaxies are distributed isotropically in space (at any given time). I do not assume knowledge of an independent distance scale or of properties of early galaxies (as is required for inferring distances via "galaxy counts").

I proposed that we estimate distances by monotonically transforming redshifts to render features in the redshift diagram consistent with spatial isotropy. We can remove systematic elongations (or contractions) of intergalactic voids along their radial directions from Earth by differentially contracting (or expanding) corresponding regions of the redshift scale. (We can also conformally map the transformed diagram to a curved manifold, to ensure that perimeters of concentric circles around Earth increase with their radial distances in the nonlinear way that renders the implied smaller scales of the earlier universe consistent with distances in the resulting mapping.)

Present redshift surveys may not extend sufficiently in angle or redshift to constrain the required transformation. I suggested only that cosmic distances might be established in this way "eventually."

ROGER N. SHEPARD Department of Psychology Stanford University Stanford, California

ETHICS FOR FUTURE PHYSICISTS

The APS directed-energy weapons report in the May 1987 issue (page S1) is certain to bring to mind in many readers the ethical problems that scientists who do SDI and other weapons research must face. They will remember these problems even more sharply if they flip ahead a few pages in that issue to read the budget report (page 59) and note how much of the 1988 science budget is allocated for military R&D. While SDI poses special and immediate concerns for the scientific community, the underlying issue behind the SDI debate is that of science's role in weapons research in general. The scientific community seems to have divided into three camps: those who oppose weapons research and won't do it, those who favor it and those who are not in favor of it but who do it anyway because a lot of good research can be done with the money. Soon there will be another group, however, composed of scientists who are undergraduates now and who just don't care as long as there is prestige and money involved in what they are doing.

This is extremely evident here at the University of Dayton. The university's department of physics and the University of Dayton Research Institute's applied physics labs are closely tied in with the R&D labs at Wright-Patterson Air Force Base. With a few exceptions, all junior or senior physics majors at Dayton work on projects for the Air Force through UDRI and Wright-Patterson. Engineering and chemistry majors are also accepted for defense-related work, either through the research institute or the base or through one of the many businesses in the Dayton area whose sole reason for existence is Wright-Patterson.

Whether it is unethical for these young scientists to work for the Air Force is a matter of opinion. But what is not so much a matter of opinion is the attitude with which students approach this work. The "get ahead" ideal that has infested many other undergraduates has also afflicted physics majors. No one at Dayton so much as considers whether DOD research is the sort of work a scientist should pursue. Some are doing the work for the money. Many are doing it for the prestige involved and the benefits such work gives to their resumés. Certain jobs under certain researchers at UDRI and Wright-Patterson seem to carry a sort of honor with them, supposedly because these researchers need brighter assistants for their work. The bright student who gets one of these "special" jobs does not give any consideration to the fact that the research he is so proudly working on will ultimately lead to the destruction of other people.

Because this sort of attitude seems so prevalent, and because the scientific community is still debating the ethics of DOD research, professors of physics should attempt to instill in students an ethical concern for their work. They do not need to turn students away from DOD research, for at this point in history a national defense is needed and therefore defense research needs to be done. But students should be encouraged to consider the implications, beyond personal gain, of the jobs they are taking.

Christopher Graney

5/87 D

Dayton, Ohio

QUASAR MISINTERPRETATION

We wish to correct any misunderstanding that may have resulted from John Kierein's letter (March 1987, page 112). Kierein's letter implies that we had detected relative proper motion between the quasars 3C 345 and NRAO 512, and that we had estimated the parallax distance of one of them. In fact, we detected no relative proper motion and obtained no parallax distance. In the first instance, for the "cores" of the quasars, we set only a firm upper bound of 20 microarcseconds per year in right ascension and 50 microarcseconds per year in declination. In the second, we set a lower bound of 15 kiloparsecs, valid only on the assumption that the two quasars are at sufficiently different distances from Earth. Thus, in a strictly logical sense, our results prove nothing about whether or not quasars are "local."

Norbert Bartel
Thomas Herring
Michael Ratner
Irwin Shapiro
Harvard-Smithsonian Center
for Astrophysics
Cambridge, Massachusetts
Brian Corey
Haystack Observatory
Westford, Massachusetts

5/87

ARE THE UCS'S SDI SURVEYS BIASED?

Since the PHYSICS TODAY letters to the editor column seems to have developed into a forum for opinions regard-