alphabet soup

Aa Bb Cc Dd Ee Ff Gg Hh li Jj Kk

Fig. 1

PHYSICS is a difficult subject. It is difficult to learn and difficult to teach. There are almost four thousand members of the American Association of Physics Teachers, and possibly an equal number of teachers who are not members of the Association, whose energy and talent are devoted during part of the day to helping students learn physics for themselves. A teacher can only shorten the time and lighten the burden. In the end a textbook is used, and the student is required to study it to the extent that he can reproduce from memory a fair percentage of the laws and principles of physics, many of which are expressed in mathematical language. It is not necessary at this stage in the development of physics to apologize to a student for using mathematical symbols, but there are times when a teacher feels apologetic for some of the symbols that the student is expected to remember and reproduce.

How is a student (or for that matter, a teacher), whose ability in draftsmanship is somewhat less than that of Leonardo da Vinci, supposed to represent on paper or on a blackboard a boldface character or a complicated Gothic letter? Such characters may be very appropriate on a condolence card or on the masthead of the New York Times, but they constitute a stumbling block to both teacher and student. It is time that physicists, physics teachers, and their spokesman, the American Institute of Physics, assume leadership in reconsidering the general problem of symbolism in physics, by formulating some general principles and helping to carry them out. It is the purpose of this note to make a few suggestions in this direction in the hope of stimulating those who are better fitted in this field.

It is the opinion of the writer, from many years of teaching experience, that, to be effective in the teaching of physics, a mathematical symbol should have the following characteristics:

- It must be of simple shape, that is, composed of a few straight or curved lines.
- It must be capable of being copied exactly on paper and on the blackboard.
- It must be of standard size, that is, all italic, Greek, and script capitals should be of equal size, and all lower case letters should be of the same size.

Let us consider each of these points separately.

1. Simplicity of Shape. Mathematical symbols are usually taken from an italic alphabet. This set of letters was originally chosen not to be suitable for mathematics, but for use in emphasizing words or sentences. In a literary composition, a passage in italics is pleasing to the eye and sufficiently different from the main body of text to arrest attention. This property does not necessarily make the italic a good mathematical symbol. It would be a great improvement if a new alphabet of simple, unadorned letters (say, slanting sans serif characters, as shown in Figure 1) were devised primarily as mathematical symbols. These letters could still be used effectively for emphasis in the text. Similarly, a new set of capital and lower case Greek letters could be designed expressly as mathematical symbols, with considerable increase of simplicity.

Since English and Greek, capital and lower case, symbols are not sufficient to cover the tremendous needs of the average textbook or treatise, other alphabets are often used. One of the worst offenders with regard to lack of simplicity is the script capital. In elementary school we are all taught to form script capitals in a simple flowing manner; and yet, when an author calls for even a common script capital, he is presented with an awkward, German-looking affair, which no one has been taught to read or to write. A possible set of script capitals is shown in Figure 2, but even these can be

ABCDEFYYJKLM NOP2RSTUVNXYZ

further simplified. At least they are familiar to the eye and the hand of the average student, and may be written as well as read.

2. Ease of Reproduction by Hand. A vector equation, represented on the printed page by boldface characters, when transcribed to a paper or blackboard, has to be replaced by other symbols. Some teachers use an italic with an arrow on top. The writer was taught in graduate school to use a letter, one line of which is doubled, and has found in subsequent years that this is an excellent method of representing vectors. It is suggested that there should be developed a simple set of capital and lower case italics of exactly the same shape as those suggested in (1), but with distinctive doubling of one line of each letter. Such characters could be written on paper or the blackboard exactly as they appear on the printed page. Examples of a few such letters are given in Figure 3. These can be written quickly and easily.

3. Equality of Size. The common Greek italics used nowadays for mathematical symbols are all smaller than the corresponding English letters. Sometimes they are so small that they look like subscripts. Conversely, some script capitals, in addition to being awkward and Gothic,

are much larger than italic capitals. In designing new sets of letters expressly to be used as mathematical symbols, it would be a simple matter to have all capitals the same size and all lower case characters the same size.

With about twenty simple script capitals, and, say, another twenty doubled letters, both capital and lower case, in addition to the usual English and Greek italics, many of the problems of an author would be solved. But still better, many of the headaches of the classroom teacher and of his students would be alleviated. These symbols, however (or other better symbols suggested by an expert), will never be prepared unless an organization, such as the American Institute of Physics, takes the lead. One cannot expect a publisher to undertake such a program, for he does not understand the problem and merely provides what the printer has on hand. The printer, in turn, buys his symbols from the monotype company, which is also uninterested in, and unaware of, the needs of the physics teacher. Physicists and physics teachers, through the agency of the American Institute of Physics, must take the first step.

Mark W. Zemansky

Aa Bb Cc Dd Ee Ff Gg Hh I i Ij K

NOTES AND COMMENTS

Stalin Prize

On March 16 last the New York Times, in a dispatch from their Moscow correspondent, reported on the award of a group of "Stalin Prizes" to a number of Soviet scientists and engineers. According to the article, "an important award" went to Boris G. Lazarev for "a new method of enrichment of helium with light isotopes".

The technical paper, reporting the above discovery, appears to have been submitted by B. G. Lazarev and his assistant, B. N. Eselson, to the Journal of the Academy of Sciences, U.S.S.R., on February 14, 1950 and published therein the same year. The method used by these authors to separate the light isotope He³ from He⁴ consisted essentially in using the "thermomechanical" effect in superfluid liquid helium.

On December 16, 1947 the undersigned in conjunction with H. A. Fairbank at Yale and A. O. C. Nier and L. T. Aldrich at Minnesota submitted a paper to the Physical Review, which, in all essentials, is identically the same method as the above. 2, 3 Naturally, no mention of these papers is made in the Eselson-Lazarev work.

Of course it is impossible to state with certainty that

the Russians were aware of this long prior work, but the probability that they were seems close to unity. For instance they refer to an article, on an allied matter, which in turn carries a reference to our 1949 paper.⁴ Again, several references ^{5, 6} to our "heat flush" technique appeared in British and Dutch reviews prior to 1950.

At the time we devised the heat flush method we thought the thing interesting but not, certainly, sensational. None of us guessed it worth a Stalin Prize.

C. T. Lane Yale University

¹ B. N. Eselson and B. G. Lazarev, Doklady Akad. Nauk S.S.S.R. 72, 265 (1950).

² Lane, Fairbank, Aldrich, and Nier, Phys. Rev. 73, 256 (1948).

³ Reynolds, Fairbank, Lane, McInteer, and Nier, Phys. Rev. 76, 64 (1949).

⁴ Reference (10) in their paper.

⁵ K. Mendelssohn, Reports on Progress in *Physics* 12, 270 (1949).

⁶ C. J. Gorter and J. H. Mellink, *Physica* 14, 285 (1948-49).