
ACOUSTICS
IT HAS BEEN my good fortune to be associated with

the Board of Governors of the Institute of Physics
most of the time from its organization and therefore I
know the progress that has been made since the found-
ing of the Institute. Many important things have hap-
pened during those twenty years, both in science and in
our national and international affairs. Although we seem
to make little or no progress in learning how to live to-
gether peaceably, these twenty years have been brilliant
ones for scientific achievement.

It is an honor to be asked to represent the field of
acoustics on this program today. I will first give a few
of the headlines in the general field of acoustics and
then give in more detail some of the recent develop-
ments in the dynamics of the hearing mechanism.

During the latter part of the last century, two great
names stand out in the field of acoustics, Rayleigh and
Helmholtz. Rayleigh, in his two classical volumes, set
up the fundamental equations for solving all theoretical
problems in acoustics in the same sense that Maxwell
did for all electromagnetic problems. Although the first
edition of his book appeared in 1878, it is still widely
used today by students of theoretical acoustics. Helm-
holtz, on the other hand, was an experimenter and laid
the ground work for the field of psychoacoustics, and
has always been an inspiration to those working in this
field.

Before the invention of the vacuum tube, there were
only a few scientists in this country doing research work
in acoustics. Sabine was doing his pioneering work in
room acoustics. D. C. Miller was working out his beauti-
ful experiments with the phonodeik and musical instru-
ments. G. W. Stewart and associates were working with
acoustic filters and binaural effects. Webster was toying
with his experimental phone for measuring absolute
values of sound pressure.

The advent of the vacuum tube not only brought
a new measuring tool which made possible accurate
acoustical measurement, but it also brought three new
industries into public use, namely, radio broadcasting,
sound pictures, and long distance telephony. These fields
required a large increase in personnel trained in acous-
tics. So it was not long after this epoch-making inven-
tion that many persons were urging the organization
of an Acoustical Society. The organization was accom-

plished in 1929. This sudden growth in acoustical work-
ers is illustrated by the fact that only one or two papers
per year appeared in the first quarter of this century,
whereas in the second quarter more than fifty papers
per year were given and printed in the Journal of the
Acoustical Society. At first, the emphasis was upon
architectural acoustics, but it was not long before there
was a well-balanced program of research in other fields
of acoustics.

In architectural acoustics, this revived interest started
with Sabine's famous formulae for reverberations in a
closed room,
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(1)

where t is the reverberation time, or time for the sound
to decay 60 db, V the volume of the room in cubic feet,
S the area of the walls in square feet, and a the aver-
age absorption per square foot. During the first year of
the existence of the Acoustical Society, this was modi-
fied by Evring and Norris to be

t =
.05 V

- S l o g . ( l - a )
(2)

Then followed many papers on how best to measure
the absorption coefficient a. Different observers did not
agree on the value of the absorption coefficient for
the same material. This controversy went on for many
years as the theory of room acoustics slowly developed
through the efforts mainly of Morse, Knudsen, Bolt,
Beranek, London, and others. The modern equations
representing the acoustical conditions in a room are
about as complicated as those representing the prob-
ability of an electron being at a certain position with
respect to the nucleus of the atom at a certain time.
Indeed, the equations are very similar. There are an
infinite number of natural frequencies in a room. The
amplitude and phases of the frequencies excited by a
given driving force are dependent in a known way upon
the boundary conditions—that is, the dynamical condi-
tions at the walls. Instead of defining these conditions
in terms of a certain number of absorption units, the
acoustical impedance of the surface is given in ampli-
tude and phase. Methods are now available for han-
dling this complicated phenomenon and in a way that
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permits one to specify the proper design for any given
acoustical effect.

Similar progress has been made in understanding the
transmission of sound through partitions. In the begin-
ning, it was thought that the walls vibrated with the
sound wave and so the heavier it was made, the smaller
would be its amplitude, and hence the smaller the trans-
mission. So heavy walls were used for insulating rooms
against outside sounds. These heavy walls certainly
were good insulators, but their cost and weight were
very great.

Although the fundamental theoretical basis for the
transmission of sound through multiple layers of dif-
ferent acoustical materials was set by Rayleigh, it is
only recently that it is beginning to be understood by
engineers working in this field. If one chooses the thick-
nesses and acoustical constants correctly, one can ob-
tain a great variety of transmission characteristics. For
a single frequency, one can make the wall perfectly
transmitting or perfectly opaque. By choosing the right
combinations of such layers, one obtains band-pass and
band-elimination filters and various combinations of
these.

In the early twenties, the fundamental acoustical
equations were successfully applied to the design of
telephone microphones and receivers and loud speak-
ers. Wente was the pioneer and one of the principal
contributors in these fields. With these instrumentali-
ties, it was mainly an engineering development to pro-
duce transmission, recording, and reproducing systems
that would produce little or no distortion in the trans-
mitted sounds.

In musical acoustics, except for systems for record-
ing and reproducing music, the progress has been slow.
On the engineering side, there have been a number of
electronic organs designed and built. These are widely
used, so you are familiar with them. In my opinion,
there is some very fruitful research to be done here.
But it needs a cooperative effort of musicians, psy-
chologists, physicists, and engineers.

In the field of psychoacoustics, there has been great
progress, and I wish to speak in greater detail about
part of this field, namely, hearing. Excellent instrumen-
talities are now available for doing research with the
speech sounds.

Fig. 1

(1) Phonographs are available, which will record
and reproduce the sounds with little or no perceptible
distortion. The new magnetic type is very useful, since
it can be cut and spliced like ordinary motion picture
film and thus the time sequence of the speech sounds
can be changed in any desired way. It is made by coat-
ing a medium like paper or scotch tape with a magnetic
oxide. If a photographic film is used, the wave form
can be viewed and studied.

(2) Sonographs are available, which will record a
sample of speech and then analyze it and plot a graph
showing time as the abscissas, frequency as the ordi-
nates, and intensity by degree of blackness.

(3) An experimental device is available for imitating
any of the vowel sounds and their various shades of
quality by changing only three parameters. This prom-
ises to be a big help to phoneticians. Instead of depend-
ing upon expert phoneticians whose judgments may
differ, for describing a spoken vowel it can be imitated
and then described by these three numbers. These three
numbers correspond roughly to the resonant frequencies
of the mouth cavity, the throat cavity, and the coupling
between them, respectively.

Mathematical relations are now available for predict-
ing how well one person, called the listener, will recog-
nize the speech sounds of another person, called the
speaker, in terms of the physical constants of the
medium transmitting the sounds and the practice coeffi-
cients of the speaker and listener.

These equations are no doubt related to the informa-
tion theory equations which have created so much ex-
citement in the communication field during the last few
years, but the connection has not yet been made. One
of the many startling conclusions coming from this in-
formation theory is that a transmission system having
a bandwidth of only 10 cycles and a signal-to-noise
ratio of about 40 db will transmit the information con-
tained in spoken speech as fast as an average talker
speaks.

These few headlines give a general view of the field
of acoustics. Now I want to cover in more detail some
recent work on the dynamics of the hearing mechanism.
Harvey Fletcher, who until his retirement had served as director of
physical research for the Bell Telephone Laboratories for more than
thirty years, is a past president of both the Acoustical Society of
America and the American Physical Society.
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YOU ARE FAMILIAR with the gross anatomy of
the ear. It is shown in Figs. 1 and 2. Sound waves

in the air are conducted down the external auditory
meatus to the tympanic membrane. This then com-
municates the vibration to the three bones of the mid-
dle ear, which may be considered as a mechanical trans-
former converting the pressure variations in the air to
pressure variations in the liquid of the inner ear. For a
long time it has been considered that this transformer
matched the impedance of the air to that of the water
and consequently amplified the pressure variations 60-
fold or by 35 db. However, recent measurements by
Bekesy on actual specimens of the human ear have
shown that this is far from the truth. In Fig. 3 are
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shown the results of these measurements. The top curve
is for the case when the impedance looking away from
the stapes into the inner ear is infinite. This would ap-
proximate the case where the containing walls of the
inner ear fluid were unyielding. But in an ear under
normal operating conditions, the basilar membrane sepa-
rating the scala vestibuli from the scala tympani is very
flexible, so instead of the impedance looking away from
the stapes being infinite, it is almost zero for the lower
frequencies. One can deduce from Bekesy's measure-
ments what the amplification ratio will be under the
actual operating conditions and it is given by the lower
curve. It is seen that this mechanical transformer is a
very poor one, having properties somewhat like those
found in cheap radio sets. There is no amplification for
frequencies below 600 cps but large attenuations, espe-
cially for the very low frequencies. It approaches the

case of infinite impedance only at frequencies as high
as 10,000 cps. But it is important to notice that there
are amplifications for the important range of speech fre-
quencies. It is mainly due to the poor performance of
this mechanical transformer that the acuity of hearing
becomes so much less at the low than for the middle
range of frequencies. It seems to me these recent find-
ings should have an important bearing on the fenestra
operations to improve hearing which are frequent these
days, but I cannot pursue this subject further here.

The dynamical behavior of the cochlea has recently
been deduced from the fundamental hydrodynamical
equations and known constants of the ear and it agrees
with the beautiful experimental results of Bekesy. In
Fig. 4 is shown a diagrammatic sketch of the inner ear.
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The problem is to find the amplitude and phase of the
basilar membrane at all positions along its length when
a sinusoidal variation of pressure, Po cos tat, is im-
pressed at the stapes end.

To solve this problem, it was necessary to make cer-
tain approximations which were as follows. Since the
length of basilar membrane is nearly 100 times its
width, it was assumed that it could be broken up into
small square vibrating units, the side of the square
being equal to the width b of the basilar membrane.
The values of b at different distances from the stapes
are given in the lower half of Fig. S. It is seen to vary
from .04 cm at the helicotrema to .01 near the stapes.
In the upper half of this figure, the average cross sec-
tion of the two canals of liquid on either side of the
basilar membrane are given. It is seen to be about
1 mm2, except for positions very near the stapes.
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Now the force driving each of these little elemental
vibrators is Pb2 where P is the pressure difference on
the two sides of the element plus forces exerted by
adjacent elements. It will be assumed that these latter
forces can be neglected in comparison to the former.
If then m is the mass of the element, s the stiffness
constant, and r the mechanical resistance, the average
velocity v of this little elementary area of the basilar
membrane is given by

Pb* 1

CO/

(3)

where Zm is the mechanical impedance of the little ele-
ment. The numerical factor ¥2 is only approximate and
is to take care of the fact that the two edges are held
so that they cannot move.

Let x be the position coordinate or distance in cm
from the stapes end of the basilar membrane to the
little element under consideration. The problem then is
to find how P, m, s and r vary with x, and then apply
this equation to find v. The displacement y is given by

v
y=—-

(4)

The radiant mass, that is, the amount added due to the
area b2 being immersed in a liquid like water, can be
calculated from acoustical equations and is approxi-
mately equal to bs. This is equivalent to adding a layer
of liquid l/2b high on either side of the element. The
mass of the membrane itself and the structures which
vibrate with it was estimated from anatomical data to
be .756s. So the total mass of the little element is

OT = 1.756». (5)

As you will remember, b was given as a function of x,
so m is known as a function of x and is shown in Fig. 6.
Bekesy measured by a very ingenious method the stiff-
ness constant at three positions along the basilar mem-
brane, with the result shown by the three points of Fig.
6. The straight line was considered to represent approxi-
mately the values of the stiffness 5. The values of m
are also shown in this figure. Now the resonant fre-
quency of each element is then given by

(6)

and is shown in Fig. 7. The circles and crosses are ob-
served data by Bekesy of the position for maximum dis-
placement of the basilar membrane for the various fre-
quencies shown. The solid dots give the calculated po-
sition for maximum displacement. Due to damping, it is
always shifted to the left of the position for the reso-
nant frequency.

The mechanical resistance can be calculated from
measurements of Bekesy and it turns out to be given by

r = .5mcoo. (7)

It is convenient to rewrite equation (3) as follows,

- = 3_2_ 1
V co 3.56 / /o \ 2 . / „ '

and the displacement

V co2

1 P
co2 3.56 U

(8)

(9)

To find how P varies with the position of the element,
one proceeds as follows. The usual hydrodynamical
equations of continuity and force are set up for a little
element of liquid in the scala vestibuli. Then a similar
set of equations is derived for the scala tympani. When
these are combined, the following equation is derived,

(10)
Q dx2

where Q is a quantity which depends upon the viscosity
of the liquid of the inner ear and approaches unity
when the cross section of the canals departs from capil-
lary size, and p is the density of the liquid which will be
considered unity, and S is the average cross section of
the two canals, and k is the usual wave constant equal
to 2TT divided by the wavelengths of a sound wave in
the liquid.

Fig. 6
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If this equation is combined with (8) to eliminate v,
the following differential equation of SP and x is derived,

= 0, (11)

from which the values SP at each position x can be cal-
culated. Since P is in general a complex quantity, this
single equation is equivalent to two others having only
real quantities. If the basilar membrane were infinitely
stiff, then the last term would be zero, and for tubes of
reasonable size where Q = unity, what is left is the
usual wave equation describing a sound wave being
propagated through the liquid of the two tubes. How-
ever, if numerical values of / and /„ and 5 are substi-
tuted, it will be found that the second term is negligible
compared to the third term. This is equivalent to say-
ing that the propagation velocity of the sound wave is
very much greater than the velocity of propagation of
the wave along the basilar membrane and that the fluid
in the inner ear may be considered incompressible when
dealing with this problem. So any displacement of fluid
by the stapes is immediately registered as a displace-
ment of fluid at the round window. Also, the fluid dis-
placed by the basilar membrane is the same as that dis-
placed by the stapes except for frequencies below 200
cycles when some of the fluid goes through the helico-
trema.

A general solution of (11) has not been found, so
numerical integrations were made for various impressed
frequencies. The boundary conditions are at x = 0

where So is area of stapes and Pa pressure difference in

liquid at the stapes from that at the round window.
Also, at * = 3.5 cm, which is the length of basilar mem-
brane, the pressure difference across the basilar mem-
brane is the same as the pressure drop through helico-
trema which is capillary in size (.2 or .3 mm in diame-
ter). It can be shown that this condition leads to the
following boundary condition, namely

d(SP)
dx

= -S(SP). (12)

The numerical factor is derived from the relative dimen-
sions of the helicotrema and the cross sections 5, and
the viscosity coefficient, and may vary for different
specimens of ears by more than 100 per cent. This is
also equivalent to two equations involving only real
quantities.

It is not appropriate to present the details of the
calculation here but only the results.
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These equations permit one to calculate the volume
of fluid displaced by the stapes when one dyne differ-
ence in pressure exists in the fluid in front of stapes
from that in front of the oval window. In Fig. 8 is
shown a comparison between calculated and observed
results. It is seen that there is an excellent agreement.

Fig. 9
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In Fig. 9 is shown the calculated pressure distribution
at different positions. The ordinates give the ratio of
PS -r- P0S, and the abscissas the distances from the
stapes. For canals of uniform cross section, these curves
would give the actual amplitude of pressure variation.
The vertical arrows show the position for the resonance
frequency. The phases were also calculated but are not
shown in this figure. They vary from 0 at x = 0 to ap-
proximately 7T at the resonance position. It is seen that
at 50 cps there is an appreciable pressure across the
helicotrema and consequently liquid is forced back and
forth through it which adds to the damping of the little
vibrating elements of the basilar membrane in this re-
gion, and this was taken into account in the calculations.
For frequencies above 100 cps, this pressure is negli-
gibly small, and the wave motion can be considered as
stopped 2 or 3 mm beyond the resonant position.

In Fig. 10 are shown the relative amplitudes and

Fig. 10

phases of vibration of the basilar membrane at different
positions. The solid lines are calculated and the points
are taken from Bekesy's experimental data. The crosses
and circles are from one specimen and the squares are
from another one taken about two years earlier. It is
seen that for high frequencies the maximum displace-
ment is near the stapes and for low frequencies it is
near the helicotrema. For frequencies below SO cps the
curves are similar to that for 50 cps, becoming flatter
as the frequency gets lower. Remember, these curves
show the amplitudes. The actual displacement of the
basilar membrane at any one time is not like these
curves. For a 200 cps tone, and at six different times
separated by Vs of a period, the displacements are
shown in Fig. 11. The time zero is taken when the
membrane is at its maximum displacement. However, it
turns out that at this time and this frequency, the total
displacement of the fluid is almost zero. This follows,
because that part of the area enclosed by the curve and
the zero axis which is above this axis is approximately

1.6 n /.» 1.9 20 Z.I Z2 23 Z4 2£ 2* 2.7 2M 29 3O 3.1 J.Z JJ 31 3S

equal to that below this axis. Since the liquid may be
considered incompressible, this means at this time the
stapes is at its equilibrium position. At a time T/4
earlier it was at its position for maximum displacement,
and this corresponds to the curve marked — T/4. Then
this curve should show a maximum total displacement,
and it does.
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A plot of the total displacement versus time as inte-
grated from these curves is given in Fig. 12. It is seen
to be sinusoidal, as it should be. The time of the wave
to travel from the stapes * = 0, to x = 2.84, the po-
sition for maximum displacement for a 200 cps tone, is
approximately T/4 or equal to 1.2S milliseconds. The
above equations permit one to calculate the travel time
from the stapes to any position, and the calculated
times are shown in Fig. 13. The circles give Bekesy's
observed results. It is seen that the speed of travel of
the wave is very much faster near the stapes where the
membrane is very stiff and slows down very much near
the helicotrema where the stiffness of the membrane is
very much reduced. For example, the average speed for
th first 8 mm is 26 meters per second, while for the last
8 mm it is only 6 meters per second.
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The values of the displacement amplitudes in Fig. 10
are relative, but the absolute values can be calculated.
The maximum displacement and velocity amplitudes for
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one dyne pressure in the air in front of the eardrum
are shown in Fig. 14. The ordinates are db from 1 cm
and db from 1 cm/sec. It is seen that the displacement
amplitudes per dyne are approximately constant from
100 to 2000 cps while the velocity amplitudes fall off
almost inversely proportional to the frequency in this
same range.
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It is interesting to calculate the maximum amplitudes
of displacement and velocity of the basilar membrane
when pure tones of various frequencies are impressed
upon the ear at intensities which are just perceptible.
Such pressures in front of the eardrum have been meas-
ured, and so the displacement and velocity amplitudes
were calculated to be those shown in Fig. IS. First, let
me call your attention to the very minute displacement
of the basilar membrane that will be detected by the
average ear. At 1500 cps it is only 10^ cm or about Vio
the diameter of the hydrogen molecule. Next, it is evi-
dent that at the threshold the velocity is more nearly
constant at various frequencies than the displacement,
the latter varying over a range of 1000 to one, while the
former has a range of about 5 to one.

The variation of acuity of hearing with frequency can
be explained by three simple assumptions. Namely, at
pressure levels corresponding to the threshold of hear-
ing, the number of nerve discharges per second coming
from a unity length of the basilar membrane is propor-
tional: (1) to the energy of vibration or f~ at the po-
sition x; (2) to the density a of the nerve endings at
the position x; and (3) to the impressed frequency for
frequencies below 300 cps to a constant for frequencies
above 300 cps.

These are all reasonable assumptions which one might
expect to hold. The last one comes from the action of
auditory nerve fibres. For frequencies below 300 cps,
the nerve is excited only at the minimum and at maxi-
mum velocity and consequently the number of dis-
charges are proportional to the frequency. The dis-
charges are in synchronism with the frequency. The
nerve fibre cannot discharge faster than 300 times per
second. So, above this frequency the discharge rate is
independent of frequency. Putting these assumptions

into an equation, we have the loudness JV of a sound
expressed in sones given by

N = , I
300

where K is a constant which was evaluated to be 5 X 10=

from the condition that N must be 10~3 sones at the
threshold. The quantity

adx — dZ

is the fraction of the total nerve endings which are in
the elemental length dx. Also, it must be remembered
that above 300 cps the quantity //300 must be taken as
unity. Using the curve of Fig. 15 for values of v* and
the curves of Fig. 10 for relative values of y, the follow-
ing values of 10 log N and N were calculated from
equation (13) to be the threshold values of N for the
frequencies indicated.

25
50
100
200

300
600
1000
2000
6000

10 log N
- 3 1 . 3
-52.2
— 27.7
- 2 9 . 2
- 3 0 . 5
- 3 0 . S
- 3 1 . 2

N (millisones)
1.3
1.6
.6
.8

1.1
1.2
1.3
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If the assumptions above were correct, the values of iV
in the last column should be 1 millisone. It is seen from
column 2 that the variations from this value are less
than ± 3 db, which is well within the experimental
error of measuring the threshold of hearing pressure
levels. So one concludes that the above assumptions
adequately account for the variation of acuity of hear-
ing with frequency. So it is seen that the dynamical be-
havior of the hearing mechanism about which there has
been so much speculation in the past is now placed on
a very' firm basis, both theoretically and experimentally,
and leaves little room for further speculation.
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