
On two levels
Leo P. Kadanoff

Some of the most interesting situations
in physics, and indeed in other sciences
as well, concern the connections
between two "levels of reality." How
does the presumed world of strings
connect with the more observable
world of quarks and gluons? How do
quantum problems "go to" their classi-
cal limits? How does the irreversibility
of the macroscopic world connect with
the known time-reversibility of micro-
scopic description? In each of these
cases, there is a tension between two
levels of description. For each situa-
tion, different laws, formulations, con-
ceptualizations, theories and experi-
ments apply at each of the two levels.

The motion of particles in a fluid
gives an interesting example of such a
"two-level system." In this column I
will discuss this motion using a variant
of a model originally proposed by J.
Hardy, 0. de Pazzis and Yves Pomeau.
(For some recent papers on the version
of this model discussed here, see the
references on page 9.) On level 1, the
rules are that particles hop in a simple
deterministic fashion upon a two-di-
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mensional lattice. One obtains level 2
by averaging the velocities of many
particles in a given region, thereby
getting a continuum description of the
system in terms of an averaged flow
velocity u(r,0. In moving back and
forth between the levels, one might
wish to know how to derive the contin-
uum equations from the rules or, con-
versely, how to derive the simplest
rules that yield a prescribed continuum
theory.

Real flows can be very rich and
beautiful. Figure 1 shows a laboratory
experiment involving the flow of a fluid
past a cylinder. The flow is made
visible by the injection of smoke parti-
cles into the fluid. In the depicted flow
the fluid moves at a relatively low
velocity. At higher speeds the pattern
becomes even more intricate.

Figure 2 depicts a different world,
containing particles in motion. The
particles in this "hexagonal lattice gas"
are distinguished by the six possible
directions of their "momenta." The
momenta are vectors of equal length
directed parallel to the basic axes of the
triangular lattice. One calculates the
total momentum (or average velocity)
for a group of particles by finding the
sum (or average) of these momentum

vectors for the individual particles.
The model is an algorithm that tells
you how the particles move about and
change their momenta. The time de-
velopment comes about through two
types of steps. In the first type of step,
which occurs between 2a and 2b, each
particle moves one lattice constant in a
direction determined by the direction
of its momentum. This kind of step is
immediately followed by a step of the
next type, in which particles undergo
collisions that conserve momentum
and the number of particles. In the
version depicted, the particles collide
when the total momentum of the parti-
cles on a given site is zero. Then, as one
can see by comparing figures 2b and 2c,
these particles change their momenta
by a counterclockwise rotation through
60°. The algorithm simply repeats the
two steps again and again.

Of course, I am about to argue that
the particle system of figure 2 will, on
the continuum level, generate flows
like the one in figure 1. How do I
know? The references give both theo-
retical and "experimental" support for
this belief. On the theoretical side, one
knows real fluids are described by a set
of relations called the Navier-Stokes
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Fluid flow behind a circular
cylinder (in a wind tunnel) is
made visible by smoke filaments;
the Reynolds number is about
300. Photograph by Peter
Bradshaw (Imperial College,
London), reproduced in Milton
Van Dyke, An Album of Fluid
Motion (Parabolic Press,
Stanford, Calif., 1982). Figure 1
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reference frame
equations. These express the space-
time dependence of the local fluid
velocity u and pressure p in the form

= - (u-V)u -
V-u = 0

+ vV2u

The first of these equations is essential-
ly an expression of local momentum
conservation (or F = ma) for a situation
in which the fluid's mass density p and
its viscosity v are constant. According
to fluid mechanics, the density is held
constant whenever flow velocities are
very small in comparison with the
speed of sound. The zero-divergence
condition is then simply an expression
of local mass conservation. The Na-
vier-Stokes equations thus arise as a
consequence of the real fluid's conser-
vation laws. Because the "right" con-
servation laws are built into the lattice-
gas model, in the appropriate limit the
model should also obey the Navier-
Stokes equations. (The symmetries are
important too, but the hexagonal sym-
metry gives the correct continuum
properties.)

The other evidence for the connec-
tion between real fluids and the lattice
gas comes from computer simulations.
For example, figure 3 shows the result
of a computer simulation of roughly the
same physical situation as that depict-
ed in figure 1. The two pictures show
qualitatively similar patterns of swirls
behind the moving cylinder. Work in
progress is aimed at quantitative com-
parisons.

I find it fantastic and beautiful that
the tiny, trivial world of the lattice gas
can give rise to the intricate structures
of hydrodynamic flow. The physical
universe is also wonderfully simple at
some levels, but overpoweringly rich in
others.

The exact connections between the
two levels of this model system will be
worked out in the next few years. In
addition, the approach may turn out to
be of some engineering and technical
importance. Knowing flow patterns is
necessary for designing an airplane,
missile, ship or chemical plant, or for
controlling air, water or soil pollution.
Most predictions of complex flows will
come from simulations. (Real experi-

ments will also be quite necessary
because they probably provide the best
atmosphere for exploratory work.) It is
possible that lattice-gas models might
be an efficient tool for performing the
required calculations. The relative ef-
ficiency of this method and of more
standard methods of solving nonlinear
partial differential equations is a mat-
ter for present debate and future inves-
tigation. The outcome of this competi-
tion among calculational methods may
well depend upon future developments
in parallel-processing hardware and
software and in programming tech-
nique, and perhaps upon discovering
more about the basic physics of flow
processes.
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A lattice-gas model. Parts a, b
and c show successive stages in
the history of the gas; the arrows

show the directions of the
momenta. Note that more than

one particle can occupy a lattice
site. Figure 2

\

Flow behind a moving cylinder in - • - - • — • — - — • — — — - . — . - - — ~ — — — - — • • — ' • —
the lattice-gas model of figure 2. . . . . , . . . . . . . N - . - . - . - . - . _ - _ - — — > ^ ~ ^ ^ - ^ — _ _ _ — , — . ^
The arrows show averaged local ^ % ^ _ , .. _. _ ^ >. % •. - - - — — _ ^ ^ . s, N s , . „ _ _ _ _ _ _ , ^ s»
velocities; the Reynolds number * ^ *
is about 100. Simulation ©1986 " ' ' ' ' -" ^ s s v - ' " • - — ^ \ i i / s - . , ^ — ^ \
by Bruce Nemnich, J. Salem and - * i t / / , - • — - - - . s \ / - •> \ / - - — N \ J / / — -~ \ t / >• — "^ \

Stephen Wolfram. Figure 3 . . , , , / / - ^ N l / ^ — \ \ ! - \ \ / / / ~ - V \ \ / / - N . \

\ \ ^ ~ / / / < ^ - \ \ \ • * ( / / - V \ \ \ ' ' M

\ \ \ ^ ~ / I \ -^ ~
/ I I i

PHYSICS TODAY / SEPTEMBER 1986 9




