
APS Forum presents awards to Rosenfeld and Keeny

The Forum on Physics and Society of The American Physical Society has named Arthur H. Rosenfeld (University of California at Berkeley and Lawrence Berkeley Laboratory) to receive the 1986 Szilard Award, and Spurgeon M. Keeny Jr (Arms Control Association) to receive the Forum Award.

Rosenfeld is being honored for his research on energy-conservation technologies. He received his BS from Virginia Polytechnic University in 1944 and his PhD from the University of Chicago in 1954. In 1957 he became an assistant professor of physics at the University of California at Berkeley; he was named full professor in 1963. Concurrently Rosenfeld became a research associate at the Lawrence Berkeley Lab in 1956, director of the Particle Data Group in 1964 and leader of Research Group A in 1971. In 1974 he founded the Energy and Buildings Program at the lab, which he has directed since then. The program was expanded in 1985 to become the Center for Building Sciences, which has played a leading role in the Department of Energy's conservation efforts. By pursuing routes to more efficient energy services in buildings, the Center has helped reduce US energy bills by \$150 billion and has demonstrated cost-effective ways to save another \$150 billion. Rosenfeld has coauthored A New Prosperity: Building a Sustainable Energy Future (Brick House, Andover, Mass., 1981) and Supplying Energy Through Greater Efficiency (Univ. California P., Berkeley, 1983).

Keeny is being recognized "for communicating to public leaders the impact of science and technology on policy issues." He received his BA (1944) and his MA (1946) from Columbia University. He was an intelligence analyst at the US Air Force Directorate of Intelligence Headquarters (1950-52), chief of the special-weapons section (1952–55) and a staff member of the Panel for Peaceful Uses of Atomic Energy (1955-56). He became chief of the atomicenergy division of the office of the assistant secretary of defense for research and engineering in 1956. He served as the technical assistant to the

ROSENFELD

Presidential science adviser from 1958 to 1969, and as a senior member of the National Security Council from 1963 to 1969. In addition, Keeny was assistant director of the Arms Control and Disarmament Agency for Science and Technology from 1969 to 1973 and deputy director of the agency from 1977 to 1981. Most recently, while serving as scholar-in-residence at the National Academy of Sciences (1981–85), Keeny

KEENY

was the principal editor of Nuclear Arms Control: Background and Issues (NAS, 1985). He has also had an interest in nuclear-power issues, and was chairman of the Ford Foundation's Nuclear Energy Policy Study, which culminated in the book Nuclear Power: Issues and Choices (Ballinger, 1977). Keeny is currently president of the Arms Control Association.

1985 French Physical Society prizes

The Société Française de Physique honored the following individuals in 1985:

Jacques Villain (Jülich) received the Jean Ricard Prize—named after its endower, and the highest prize awarded by the society—for his "impressive achievements in statistical mechanics and in solid-state physics." Early in his career Villain discovered helimagnetism; he has since contributed significantly to the study of commensurate and incommensurate transitions—in particular with his models for one- and two-dimensional materials—and to the study of spin glasses.

Denis Jérôme (CNRS, Université de Paris-Sud) received the Holweck Prize for his "impressive achievements with organic conductors and superconductors." Jérôme and his group at the Laboratoire de Physique des Solides (Orsay) have extensively studied one-dimensional organic conductors. In 1965 M. Ribault (Orsay), K. Bechgaard (Copenhagen) and Jérôme made the first observation of superconductivity in organic materials.

James Lequeux (Observatoire de Marseille) was honored with the Robin Prize for his "many brilliant feats as an astrophysicist." Lequeux's research has included galactic evolution (in particular studies of compact blue and irregular galaxies), uv studies of the Galaxy and studies of stellar popula-

Birkhäuser Boston

Your source for major developments & perspectives in physics

CONTEMPORARY PHYSICISTS

JAMES GLIMM/ARTHUR JAFFE

Volume One

Quantum Field Theory and Statistical Mechanics:

Expositions

Collected Papers

James Glimm and Arthur Jaffe

Two of the foremost researchers in the field comprehensively present the developments over the past twenty years in quantum field theory. Coverage includes material that has not previously been widely accessible. Dual edition: 418 pages

Hardcover / 0-8176-3271-9 / \$64.95 Softcover / 0-8176-3275-1 / \$29.95

Volume Two

Constructive Quantum Field Theory: Selected Papers Collected Papers

In this companion volume to Quantum Field Theory and Statistical Mechanics, Glimm and Jaffe provide major breakthroughs as well as a wealth of ideas and techniques for further study.

Hardcover / 533 pages / \$74.95

ISBN: 0-8176-3272-7 Set: Volumes 1 & 2

Hardcover / \$139.90 / 0-8176-3273-5

T.D. LEE

Selected Papers Gerald Feinberg, ed.

This set of volumes covers nearly four decades of the scientific papers of T.D. Lee. His work spans almost the entire spectrum of theoretical physics, with the best of these papers brought together here under ten categories.

Volume One

Includes the landmark paper which established the universal Fermi interaction and introduced the notion of the intermediate boson. Also included: astrophysics, hydrodynamics, statistical mechanics, solid state physics

Hardcover / 700 pages / \$70.00 (tent.) / 0-8176-3341-3

Covers quantum field theory and symmetry principles, the fields which have been T.D. Lee's main concern. Hardcover / 700 pages / \$70.00 (tent.) / 0-8176-3342-1

Volume Three

Professor Lee's more recent papers on strong interaction models, discrete physics and gravity.

Hardcover / 700 pages / \$70.00 (tent.) / 0-8176-3343-X

Set: Volumes One, Two & Three

Hardcover / \$210.00 (tent.) / 0-8176-3344-8

Available at your local scientific bookstore or order directly from the publisher:

PROGRESS IN PHYSICS

STATISTICAL PHYSICS AND DYNAMICAL SYSTEMS

Rigorous Results

J. Fritz, D. Szasz, and A. Jaffe, eds.

This proceedings volume contains the papers of world renowned scientists who participated in the Second Colloquium and Workshop on Random Fields. Their papers explore important new developments in the field. Hardcover / 481 pages / \$44.95

PPH, Vol. 10 / ISBN: 0-8176-3300-6

CRITICAL PHENOMENA

1983 Brasov School Conference

Valentin Ceausescu, Gabriel Costache, and Vladimir Georgescu, eds.

A collection of contributions crucial to an understanding of the nature and development of a general theory of phase transitions and the mathematical structure of critical phenomena in various areas of physics. Hardcover / 438 pages / \$39.95

PPH, Vol. 11 / ISBN: 0-8176-3289-1

RENORMALIZED SUPERSYMMETRY

The Perturbation Theory of N = 1 Supersymmetric Theories in Flat Space-Time O. Piguet and K. Sibold

This book provides a careful construction of higher orders in perturbation theory which permits a systematic search for anomalies. The authors offer a complete and self-contained account of a consistent renormalization program. Main models are constructed at all orders of perturbation theory with emphasis on coherent presentation, mathematical rigour and completeness. An excellent introduction to the field.

Hardcover / 368 pages / \$41.00 (tent.) PPH, Vol. 12 / ISBN: 0-8176-3346-4

FRONTIERS OF PHYSICS

1900-1911

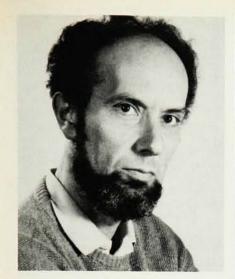
Selected Essays

Arthur I. Miller

These selected essays explore the rich traditions in electrodynamics, electrical engineering and mathematics on which the physicists of 1905 based their conceptions. The struggles, methods, and intent of Max Abraham, H.A. Lorentz, Max Planck, and Henri Poincaré are discussed in light of contemporary philosophical currents.

August 86 0-8176-3203-4 320 pages (tent.) \$29.95 (tent.) A Pro Scientia Viva Title

Also available from the same author . . IMAGERY IN SCIENTIFIC THOUGHT


Creating 20th Century Physics

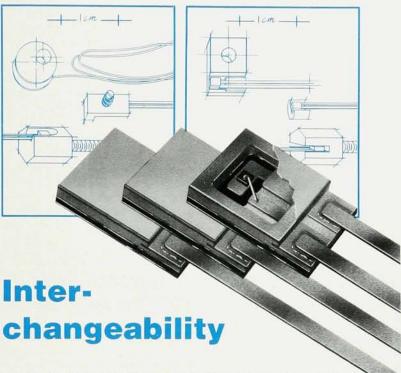
0-8176-3196-8 A Pro Scientia Viva Title

355 pages

\$24.95

Birkhäuser Boston, Inc. c/o Springer-Verlag Distribution Center P.O. Box 2485 Secaucus, NJ 07094

JÉRÔME


tions and stellar extinction in nearby galaxies. In the 1960s Lequeux and his group at Nançay obtained the first infrared solar spectra.

Daniel Beysens (Saclay) received the Ancel Prize for condensed-matter physics for his work on off-equilibrium critical phenomena. Jean-Luc Destombes (Lille) received the Aimé Cotton Prize for atomic and molecular physics for his studies of ion radicals important in astrophysics, such as OH, CS, SO and CO+, using millimeter spectroscopy. Destombes has detected a rotational transition in H₂D that is of importance to models of the chemistry of the interstellar medium. Mannque Rho (Saclay) received the Langevin Prize for theoretical physics for his pioneering contributions in the development of intermediate-energy physics, including providing evidence for mesonic degrees of freedom (1970-80), and in particular for his work on the chiral bag model of the nucleon. Jean-Jacques Aubert (Marseille) was awarded the Joliot-Curie Prize for particle and nuclear

VILLAIN

The New Watch-Word in Cryogenic Temperature Sensors:

Sensor after sensor after sensor. Each the same. No screening, selecting, calibrating, . . . no hassle. It's a new phenomenon in cryogenic thermometry and it separates Lake Shore DT-400 Diode Temperature Sensors from all the others.

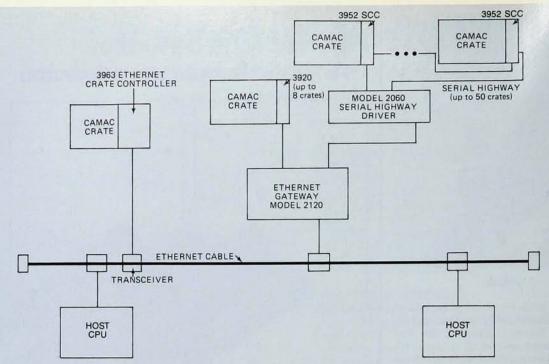
Now you can order as many accurate, stable, repeatable, fast, wide range, INTERCHANGEABLE, Model DT-400 Sensors as you need. Prices are low, delivery off-the-shelf.

Lake Shore's new INTERCHANGEABLE Sensors are founded in two key component developments:

- Virtually ideal temperature sensing elements that exhibit precise, repeatable, monotonic thermal response over a wide temperature range.
- Custom, hermetically-sealed, sapphire-based ceramic sensor packages that preserve all the thermal attributes of the sensing element.

Meticulous assembly of the sensors on state-of-the-art bonding equipment in a semiconductor-grade clean room keeps them free of epoxies, polyimides, fluxes and other contaminants. Verification of every sensor over its entire temperature range assures the reliability you expect from us.

Whatever your cryogenic temperature needs: generation, detection, measurement, control, and more to be announced soon, give us a call. At Lake Shore . . . we know cryogenics COLD!


Lake Shore Cryotronics, Inc.

64 E. Walnut St., Westerville, OH 43081 • (614) 891-2243

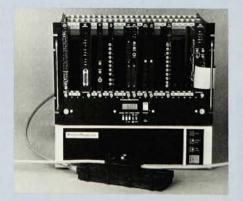
Europe: Cryophysics: Witney, England • Jouy en Josas, France Darmstadt, W. Germany • Geneva, Switzerland

India: Goodwill Cryogenics, Bombay • Japan: Niki Glass Co., Takanawa, Tokyo

Circle number 34 on Reader Service Card

Link Your CAMAC System to the Ethernet Network with KSC's New Ethernet-to-CAMAC Interfaces

Now you can quickly connect CAMAC (IEEE-583) to the Ethernet network. Using DECnet protocol and a unique combination of both hardware and software components, these two new interfaces offer you a powerful networking system, LAM interrupt capabilities, and LSI-11 processors operating under RSX-11S for high-speed access to CAMAC modules in the remote crates. This use of independent processors provides the ability to incorporate newer processors as they become available.


The 3963 Ethernet Crate Controller, with a choice of LSI-11/23 or 11/73 processor, mounts in the crate and can be used when your application requires a small number of distributed CAMAC crates. Larger multicrate systems can

be configured using the 2120 CAMAC-to-Ethernet Gateway with an LSI-11/73 processor. Up to two megabytes of memory are available for either interface.

KSC's powerful software package provides a transparent interface to CAMAC via Ethernet, as if your CAMAC system was directly connected to your host computer. Its powerful command list structure minimizes Ethernet overhead. Using simple Fortran calls, complex CAMAC I/O operations can be easily constructed with single I/O request blocks. Multiple hosts and Ethernet Crate Controllers (ECC) are supported. Additionally, a single host can have multiple tasks, each communicating with the same ECC.

3963 Ethernet Crate Controller

This set of three CAMAC modules houses a CAMAC controller, LSI-11 processor, RAM, Ethernet interface, and down-line boot ROM. Software licenses are included. It occupies five slots in the crate. Software documentation and distribution are provided as part of the Host Support Package.

2120 Ethernetto-CAMAC Gateway

This interface requires a powered LSI-11 box to house system components (LSI-11 processor, RAM, Ethernet interface, and boot ROM. Software licenses are included). Space is provided for up to eight 2920/3920 crate controllers and one 2060 serial highway driver. Software documentation and distribution are provided with the Host Support Package.

KineticSystems Corporation

Standardized Data Acquisition and Control Systems

U.S.A.

11 Maryknoll Drive Lockport, Illinois 60441 Phone: (815) 838 0005 TWX: 910 638 2831

Regional Offices

Northeast: (609) 921 2088 TLX 833040 Southeast: (305) 425 9793 TLX 441781 (505) 883 3846 TLX 660444 South Central: (415) 797 2351 TWX 910 997 0544 West Coast: Zuchwil, Switzerland: (065) 25 29 25 TLX 93 46 48

Circle number 35 on Reader Service Card

Europe

3 Chemin de Tavernay 1218 Geneva, Switzerland Phone: (022) 98 44 45 Telex: 28 96 22

physics. Aubert was part of the group working at Brookhaven, led by Samuel Ting, that discovered the J/ψ particle in 1974, simultaneously with Burton Richter and his group working at SLAC. More recently Aubert played an important role in the discovery of the EMC effect using the high-energy muon beam at CERN. Françoise Hippert (Orsay) received the Brelot Prize, which is presented for achievement in solid-state physics by a young postdoctoral physicist, for her work on macroscopic anisotropy in spin glasses. The society honored two physicists for their accomplishments in applied research: M. Pigeon (Commisarial à l'Energie Atomique) was awarded the Esclangon Prize for his work on the use of the Foucault current in controlling metallic structures, and R. Campargue (CEA) received the Foucault Prize for his work on molecular jets. G. Meurgues (Paris Museum) and J. M. Pelt (Metz), two biologists, shared the Jean Perrin Prize for the popularization of science. The 1985 IBM Prize was awarded to Bernard Derrida for "his achievements in statistical mechanics and, more particularly, for his work on the approach to turbulence and on the physics of disordered systems."

in brief

Eric B. Forsyth has been named chairman of the newly formed accelerator-development department at Brookhaven National Laboratory. Forsyth, an electrical engineer, joined Brookhaven in 1960; he has worked on the Alternating-Gradient Synchrotron and on superconducting instrumentation.

Carl M. Shakin, professor of physics at Brooklyn College, has been named Distinguished Professor by the City University of New York. Robert B. Leachman, formerly at Army headquarters at the Pentagon, has become a senior scientist at Lockheed Missiles and Space Company in Sunnyvale, California.

Kenneth L. Kliewer, associate director for physical research at Argonne National Laboratory, will become dean of the School of Science at Purdue University in September. He will succeed Allan Clark, who resigned his position at Purdue to become president of Clarkson University in July 1985.

obituaries

John C. Wheatley

The scientific community lost a most valued member with the premature death of John C. Wheatley on 10 March 1986. For the many who shared with him the exciting discoveries of the last 30 years in quantum fluids at low and very low temperatures, and for those who had the privilege of being his students, postdocs and close collaborators, the void left by his death will be very hard to fill. Wheatley was born 17 February 1927 in Tucson, Arizona. At the time of his death in Los Angeles he was a professor of physics at the University of California, Los Angeles, as well as a University of California-Los Alamos Fellow.

Wheatley received his undergraduate education at the University of Colorado at Boulder, and his graduate training at the University of Pittsburgh under David Halliday. His dissertation subject led him, in his initial appointment at the University of Illinois, to study the nuclear alignment of cobalt nuclei and thermometry at low temperatures. These studies were followed by a very comprehensive program to extend measurements of the thermal, magnetic and transport properties of He³ and He³-He⁴ mixtures to

WHEATLEY

the 3–500-mK range. He remained at Illinois until 1967, when he moved to the University of California, San Diego. In 1981, having broadened his interests to include the study of heat engines, and needing close contact with advanced technical facilities, he moved to Los Alamos. In 1985 he decided to divide his time between UCLA and Los

Alamos to remain close to an academic setting and to retain the opportunity to teach undergraduate and graduate students. Along the way he spent several periods abroad, in particular a cherished stay in 1954-55 at the Kamerlingh Onnes Laboratory in Leiden, Holland, and an 18-month visit in 1962-63 to Centro Atomico Bariloche in Bariloche, Argentina, where he helped establish a low-temperatureresearch laboratory. His keen interest in the solution of practical problems and his great organizational skills led him, with others, to start the SHE Corporation (now Biomagnetic Technology Inc), a company originally dedicated to the fabrication of very specialized low-temperature equipment.

Wheatley's years at Illinois and San Diego produced a large portion of our present knowledge of liquid He3 and dilute mixtures of He3 in He4, and inspired much of the work that followed. In the Illinois years, prior to the development of dilution refrigeration as a practical tool, he and his students constructed some of the most elaborate cryostats using electronic adiabatic demagnetization ever built. Knowledge of the thermal and magnetic properties of matter at very low temperatures was rather limited at that time, so in parallel with the study of He3, and to guarantee thermal equilibrium and thermometry, they measured the thermal conductivity and magnetic susceptibility of every possible material to be used in a cryostat. Nothing was ever left to chance. Some of his best-known achievements of this period were the measurements of specific heats of pure He3 and dilute solutions of He3-He4 down to several mK-from which effective masses of the He³ quasiparticles could be calculated and which confirmed the lack of phase separation in the dilute solutions—the observation of zero sound in He3, and the observation of minima in the thermal conductivity of He³ and the dilute solutions.

The first American dilution refrigerator was built at Wheatley's lab. His idea of making a discrete set of heat exchangers using sintered metal powders (copper in his first design) is widely used in commercial versions. On the experimental side, he used the refrigerator as a "wonderful toy" to learn more about the behavior of He3 and the He3-He4 mixtures, in particular the viscosities of the liquids and the Kapitza resistances between them and solid surfaces. Using two cascaded refrigerators, his group was the first to reach 4 mK without recourse to magnetic cooling.

At San Diego Wheatley built a stateof-the-art laboratory, with new dilution refrigerators as the sources of cooling. In 1968 he started a program to develop an improved refrigeration tool based on