#### **Multifractals and fractals**

Bravo for your April Search and Discovery story (page 17). In your February Reference Frame column (page 6), Leo Kadanoff asked, "Why all the fuss about fractals?" Now we have that part of the answer which involves his own work and that of his close associates concerning "multifractals." This answer exhibits two of the main attractions of fractal geometry. First, the physical problems it tackles are very important, difficult, diverse and apparently unrelated (as exemplified by the new problem of diffusion-limited aggregation and the old problems of the onset of turbulence and of mature turbulence). Second, the set of tools of fractal geometry is powerful and unified, and we see that it is developing fast.

Kadanoff's query could receive many other answers, all equally impressive but centered on the work of other scholars. I trust you will come to them.

Now that the process of recording the history of fractals in physics has begun, allow me to add to the record. The first mention of multifractals was in 1968, in my work on mature turbulence,1 and I published2-6 extensively on them in the 1970s. There was enough material for surveys in a special chapter of my book Les Objets Fractals,4 and in Section 6 of my Haifa StatPhys paper. 6 My contribution to Dimensions and Entropies in Chaotic Systems7 is a handy summation of this early work. In my contribution to Turbulence and Navier Stokes Equations I acknowledged<sup>5</sup> that "penetrating comments by Uriel Frisch . . . motivated me to substantial further development." Frisch and Giorgio Parisi (reference 3 of the April news story) coined the term "multifractals" and went on to their reformulation of this topic. Similarly, R. Benzi, G. Paladin, Parisi and V. Vulpiani describe their work (reference 4 of the April news story) as "in the spirit of Mandelbrot's weight(ed) curdling," and their first results were precisely as my work and that of J. Peyriere8 had predicted. Also, the papers by H. G. E. Hentschel and I. Procaccia9 and by P. Grassberger<sup>10</sup> generated much later work, but started from things already known. In reference 9, note 17 states

that inequalities among a multifractal's infinity of exponents were published3 by me in the Journal of Fluid Mechanics.

Thus the link between my old work and your news item was documented repeatedly, yet these discreet footnotes deserve an airing. Anyhow, the latest about (multi)fractals from Chicago fills me with the pride of a father-soon to be a grandfather?

While my papers from the 1970s are no easier to read than they were to write, they include items that have not been superseded or rediscovered. In particular, my contribution to Statistical Models and Turbulence2 includes useful illustrations of multifractal measures: the densities of the overprinted dots on page 17 of your April issue and the closely related plates 198 and 199 of my book The Fractal Geometry of Nature.11

More of history. The physicists' present wide involvement with fractals owes a great deal to specific events at Harvard in 1980 that led to papers I wrote12 with Y. Gefen, A. Aharony and assorted accomplices.

Kadanoff asked in February, "Where is the physics of fractals?" It is true that diffusion-limited aggregation and its innumerable variants have "only" been discovered and described, and they have not yet been fully accounted for. Description coming before theory is the usual pattern of science. But look at all the hard physics that has become thoroughly understood in these scant six years. Look at the explosion of knowledge about percolating networks, and the wonderful and diverse ways in which the fractal shapes influence and mold physics!

We all want more, and expect the future of fractals in physics-just as in engineering-to dwarf its past, but the breadth and health of the present do deserve mention.

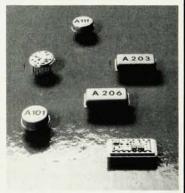
#### References

- 1. B. B. Mandelbrot, in Proc. Symp. Turbulence of Fluids and Plasmas, Polytechnic Inst. of Brooklyn, 1968, E. Weber, ed., Interscience, New York (1969), p. 483
- 2. B. B. Mandelbrot, in Statistical Models and Turbulence (Lecture Notes in Physics, Vol. 12), Proc. Symp., La Jolla, Calif.,

#### CHARGE SENSITIVE PREAMPLIFIERS



#### FEATURING


- Thin film hybrid technology
- Small size (TO-8, DIP)
- Low power (5-18 milliwatts)
- Low noise
- · Single supply voltage
- . 168 hours of burn-in time
- MIL-STD-883/B
- · One year warranty

#### APPLICATIONS

- Aerospace Portable
- instrumentation
- Mass spectrometers
- Particle detection
- Imaging
- Research experiment:
- Medical and nuclear electronics
- Electro-optical systems

#### ULTRA LOW NOISE < 280 electrons r.m.s.!

Model A-225 Charge Sensitive Preamplifier and Shaping Amplifier is an FET input preamp designed for high resolution systems employing solid state detectors, proportional counters etc. It represents the state of the art in our industry!



Models A-101 and A-111 are Charge Sensitive Preamplifier-Discriminators developed especially for instrumentation employing photomultiplier tubes, channel electron multipliers (CEM), microchannel plates (MCP), channel electron multiplier arrays (CEMA) and other charge producing detectors in the pulse counting mode.

Models A-203 and A-206 are a Charge Sensi tive Preamplifier/Shaping Amplifier and a matching Voltage Amplifier/Low Level Discriminator developed especially for instrumentation employing solid state detectors, proportional counters, photomultipliers or any charge producing detectors in the pulse height analysis or pulse counting mode of operation



6 DE ANGELO DRIVE, BEDFORD, MA 01730 U.S.A. TEL: (617) 275-2242 With representatives around the world.

Circle number 9 on Reader Service Card

## In Mathematical and Statistical FORTRAN Programming

# Gets You to the Solution -25101

There is a faster way to get from problem to solution. A way to reduce development time, simplify maintenance, improve accuracy. A way to measurably increase productivity by selecting from hundreds of complete, fully tested mathematical and statistical FORTRAN subprograms:

#### IMSL subroutine libraries

Comprehensive, economical, and supported by the world's leading supplier of **FORTRAN** libraries for mathematics and statistics.

Calling a routine from an IMSL library is faster than writing it. It's a simple fact, but it can mean a big improvement in the productivity of both people and computers. It's why professional problem solvers in more than 60 countries have chosen IMSL libraries as their standard resource for FORTRAN programming. IMSL libraries get you to the solution faster.

| Return this cou                                  | upon to:                         |               |
|--------------------------------------------------|----------------------------------|---------------|
| IMSL Sales Div                                   |                                  |               |
| 2500 ParkWest                                    | Tower One                        |               |
| 2500 CityWest                                    | Boulevard                        |               |
| Houston, Texa                                    | s 77042-3020, USA                | ٨.            |
| Telephone: (7                                    | 13) 782-6060                     |               |
| Telex: 791923 I                                  | MSL INC HOU                      |               |
| In the U.S. (                                    | outside Texas) o                 | all toll-free |
| 1-                                               | -800-222-IMSL                    |               |
| ☐ The IMSL Lib<br>☐ SFUN/LIBRAI                  | rary   MATH/PC<br>RY   STAT/PC-I |               |
| Name                                             |                                  |               |
| Department                                       | Title                            |               |
| Organization                                     |                                  |               |
| Address                                          |                                  |               |
| City                                             | State                            | Postal Code   |
| Area Code/Phone                                  |                                  |               |
| Telex                                            |                                  |               |
| Computer Type                                    |                                  | PT860         |
|                                                  |                                  | . 1000        |
| $\mathbf{H}_{\mathbf{V}}\mathbf{V}_{\mathbf{A}}$ |                                  |               |
|                                                  |                                  |               |

Copyright @ 1986 IMSL, Inc. All Rights Reserved.

#### Broad Scope.

IMSL libraries provide the most comprehensive selection of mathematical and statistical FORTRAN subprograms available. In almost any numerical programming application, IMSL libraries will meet your current and future needs with over 700 high-quality subprograms.

#### Standard User Interface.

Uniform calling conventions and documentation for all supported computer environments make IMSL libraries easy to learn and easy to use. Programs developed using IMSL libraries are much simpler to de-bug and maintain than programs containing undocumented, non-standard or unverified code.

#### Wide Compatibility.

IMSL libraries are affordably priced and compatible with most computing environments, from supercomputers to personal computers. Making IMSL libraries available on all of your computer systems can expand development flexibility and enhance application portability in your multiplecomputer environment.

#### Comprehensive Support.

IMSL product support includes expert consultation, regular software enhancement, and maintenance. These services are performed entirely by IMSL personnel to ensure quality and consistency. IMSL's systematic, comprehensive support is the best way to protect the value of your software investment.

#### Accuracy and Reliability.

IMSL subroutines are designed, and exhaustively tested, for accuracy and reliabilityand continually verified through thousands of hours of computation by customers around the world. Using IMSL libraries not only increases productivity, but can also enhance the accuracy and robustness of your programs and applications.

The IMSL Library MATH/PC-LIBRARY

STAT/PC-LIBRARY

SFUN/LIBRARY

Over 500 mathematical and statistical subroutines Subroutines for mathematical applications (for IBM personal computers) Subroutines for statistical

analysis (for IBM personal computers)

Subprograms for evaluating special functions

Problem-Solving Software Systems

### letters

- 1972, M. Rosenblatt, C. Van Atta, eds., Springer-Verlag, New York (1972), p. 333.
- B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974); also B. B. Mandelbrot, Comptes Rendus 278A, 289, 355 (1974).
- B. B. Mandelbrot, Les Objets Fractals, Flammarion, Paris (1975).
- B. B. Mandelbrot, in *Turbulence and Navier-Stokes Equations* (Lecture Notes in Mathematics, Vol. 565), Proc. Conf., Orsay, 1975, Springer-Verlag, New York (1976), p. 121.
- B.B. Mandelbrot, Proc. 13th IUPAP Conf. on Statistical Physics, Haifa, 1977,
   D. Cabib, C. G. Kuper, I. Riess, eds., Adam Hilger, Bristol (1978), p. 225.
- B. B. Mandelbrot, in *Dimensions and Entropies in Chaotic Systems*, Proc. Int. Wksp., Pecos River, N.M., 1985, G. Mayer-Kress, ed., Springer-Verlag, New York (1986), p. 19.
- J. Peyriere, Duke Math. J. 44, 591 (1977).
- H. G. E. Hentschel, I. Procaccia, Physica (Utrecht) 8D, 435 (1983).
- P. Grassberger, Phys. Lett. 97A, 227 (1983).
- B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1982).
- 12. The first was Y. Gefen, B. B. Mandelbrot, A. Aharony, Phys. Rev. Lett. 45, 855 (1980).

IBM Thomas J. Watson Research Center Yorktown Heights, New York Harvard University

5/86

Cambridge, Massachusetts

### **Apartheid**

I have often found it bitterly amusing to receive an appreciative nod from acquaintances who discover that I have lived for over a year in the Soviet Union, followed by a murderous frown when they learn that I have spent an equal amount of time in South Africa. It is thus distressing to read the letter of A. Bhattacharya, Murray Goldman and T. Schaffer, and that of Charles Hyde-Wright, in the October Physics TODAY (page 148).

Bhattacharva and his colleagues are probably correct when they say that "the violations of fundamental rights in South Africa are not on a par with those of other African states or the Soviet Union." If one were perverse enough to construct a scale of humanrights violations, at least one could say that the South African government oppresses only three-quarters of the population, whereas the same sort of laws in the USSR oppress virtually everybody. (Is this acceptable because it is no longer discriminatory?) And if you were one of the 100 000-300 000 victims of the recent Ugandan genocide, you might be hard pressed to rank South African atrocities above all others.

Bhattacharya, Goldman and Schaffer write that "it is totally irrelevant whether these universities claim to be racially neutral. They are subject to the same laws of apartheid and must comply. It is hard for us to imagine that a freedom-loving American physicist would accept a position anywhere in South Africa. . . . If this hurts South African physicists maybe they should think of emigration." I am skeptical that even they believe these statements. First, they are condemning certain South Africans because they were born there. Emigration is not easy, emotionally or legally. (Are Bhattacharva and his colleagues offering jobs?) Indeed, some love this troubled land and want to stay in order to help as they are able. Second, I doubt that Bhattacharya and his colleagues would object to an American who came to teach at the University of the Western Cape, a nonwhite and somewhat radical institution in Cape Town, which has recently been the scene of many protests against government actions. Neither have I heard complaints that Gandhi spent 20 years in South Africa. Third, while discriminatory policies do prevail at the Afrikaner universities (Stellenbosch, Orange Free State, Pretoria, Potchesfstroom), other South African universities (Witswatersrand, Rhodes, Cape Town) are surprisingly liberal.

The University of Cape Town, of which I have firsthand experience, has a nonracial admissions policy, an affirmative-action program and a 15% nonwhite student population. This figure shows that Cape Town is more integrated than, say, the University of Texas, even if one adjusts for the percentage of nonwhite population in the country or state. Cape Town's liberal traditions appear to me genuine. For instance, the vice-chancellor, Stuart Saunders, has recently been elected president of the South African Institute of Race Relations. Several members of my department also belong to this organization, and one, cosmologist George Ellis, is chairman of its Cape Town division. Protests against repressive government actions are frequent, are supported by the faculty and are held in dangerous circumstances. Students and staff have been teargassed, beaten by the police and arrested. Clearly, the racial policies of an individual institution are reflected in its response to the apartheid laws.

In regard to Hyde-Wright's letter, I should mention that the University of South Africa at Pretoria, as distinguished from the University of Pretoria, is primarily a correspondence school and has a very large black enrollment. To the best of my knowledge it accepts students from any country in the world, regardless of race.

#### IMSL Redefines The PC Site License

IMSL's new Organizational Site License can put IMSL mathematical and statistical FORTRAN libraries to work on every IBM personal computer in your organization-quickly, easily and economically.

A Better Idea in Site Licensing

IMSL's Organizational Site License doesn't impose the geographical limitations of other site licenses. It allows you to duplicate and use IMSL PC Libraries wherever you need them-in the office, at home, or around the world.

#### Manageable Software Costs

The Organizational Site License costs far less than multiple individual licenses, and the one-time license fee effectively puts a ceiling on your PC software costs.

#### Instant Availability, Higher Productivity

The Organizational Sité License lets you distribute IMSL software when you need it, eliminating the cost and delay of one-at-a-time purchases and the problem of unauthorized copying. And with IMSL libraries as your standard FORTRAN resource, you can achieve faster program development, easier maintenance, and higher productivity.

For Complete Information...
Write to:

IMSL Sales Division 2500 ParkWest Tower One 2500 CityWest Boulevard Houston, Texas 77042-3020 USA

Or

Call 1-800-222-IMSL (toll-free) In Texas or outside the U.S., call (713) 782-6060. Telex: 791923 IMSL INC HOU. Facsimile (Gp I/II) (713) 782-6069.

Copyright © 1986 IMSL, Inc. All Rights Reserved

Circle number 11 on Reader Service Card