
Group theory: Who needs it?
Herman Feshbach

In the late 1930s, when I was a gradu-
ate student, the application of group
theory to quantum mechanics was not
commonly a part of the curriculum
except for obvious examples of spatial
symmetry in solid-state and molecular
physics. We prided ourselves that we
could obtain the results for atomic
spectra without using the formal appa-
ratus of group theory. Edward Condon
and George Shortley, in the introduc-
tion to their treatise The Theory of
Atomic Spectra, explicitly reveal this
attitude. They write: "We wish finally
to make a few remarks concerning the
place of the theory of groups in the
study of the quantum mechanics of
atomic spectra. The reader will have
heard that this discipline is of great
importance for the subject. We man-
age to get along without it."

The situation is strikingly different
today. Group theory is such a perva-
sive component of research and study
that it is not unlikely that many are
more conversant with group theory
than with the Schrodinger equation,
the reverse of the situation that pre-
vailed 50 years ago.

What makes group theory such a
powerful tool? The traditional an-
swer—that group theory permits the
formulation as well as the exploitation
of the symmetries of the system under
study—begs the question. Surely what
one would like to know is what features
of the observed phenomena reveal the
presence of a symmetry and an asso-
ciated group structure. In fact, one can
point to close, direct connections
between experiment and group struc-
ture. It is from these that group theory
ultimately derives its effectiveness.

Where does one search for symme-
try? Generally among the low-lying
states, where the levels are few and
well separated and their properties
measurable. One can expect that their
wavefunctions will have a high degree
of symmetry, reflecting the symmetry
of the system and thereby achieving a
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greater binding. Moreover, as a conse-
quence, these wavefunctions may be
simply related to each other.

The search for symmetry is a search
for simply related sets of states. A first
indication of such states lies in the
energy spectrum. A multiplet struc-
ture suggests an underlying degener-
acy, one hallmark of symmetry. A
familiar example is the near equality of
the neutron and proton masses, which
suggested the internal symmetry of
isospin. This multiplet has been en-
larged to the baryon octet with the
addition of the particles A, 2+ " and
H°" . However, their mass differences
are of the order of hundreds of MeV,
indicating the need for additional evi-
dence before one can identify the un-
derlying SU(3) symmetry.

Another type of regularity indicating
group structure is provided by the
deformed nuclei, which exhibit rota-
tional spectra. The group is the rota-
tion group. When other degrees of
freedom such as shape and volume are
included, the group is enlarged to U(6).

A simple relation connecting the
energies of the low-lying levels is not
sufficient to establish a group struc-
ture. There must be relations as well
among the associated wavefunctions.
For each group, these are provided by
operators that relate the basic states
for a group representation. The raising
and lowering operators for the harmon-
ic-oscillator wavefunctions are exam-
ples.

Observationally, these relations
manifest themselves through transi-
tions, induced by a probe such as the
photon. A signal of the existence of a
symmetry, which will be most visible
for a special probe or probes, is the
enhanced transition rates for some sets
of transitions and their reduced values
for other sets. These results suggest
groupings of related states, while the
operators associated with the transi-
tions are closely related to the group
operators I just mentioned. Once these
levels and groupings are known, one
searches for the underlying group by
comparing the predicted level scheme,
branching ratios and selection rules

with experimental data. These predic-
tions follow from the properties of the
group and do not depend upon dynami-
cal calculations. The confrontation of
theory and experiment is immediate.
In summary, once we know the probe
that induces the transitions, which
reveal the symmetry as I have de-
scribed it, we have the key to unlock
the nature of the group operators and
the group.

An example is furnished by the
enhancement of quadrupole transi-
tions between the levels of a rotational
band of a deformed nucleus and their
inhibition for interband transitions.
The quadrupole operator inducing the
transitions is the operator connecting
the wavefunction of the band and is
thus the representation of an element
of the underlying group.

We rarely find the ideal situation, in
which group properties and experi-
ment are in exact accord. Violations
occur and the symmetry is said to be
broken. The unequal masses of the
members of the baryon octet are an
example of symmetry breaking. Nev-
ertheless one can still identify the
underlying group in this case because
the component subgroups of SU(3)
maintain their identities. Symmetry
breaking is accomplished by assigning
different masses to each subgroup.
This assumes that the symmetry break-
ing does not lead to significant matrix
elements among different representa-
tions of the group. If they are large,
symmetry is badly broken, and the
advantages of the group description
lessen. In the case of the isobar analog
states of nuclear physics, the energies
of states of differing isospin are shifted
by the isospin-symmetry-breaking Cou-
lomb interaction, but little mixing of
different isospins occurs. Isospin re-
mains a good quantum number.

I have focused on internal symme-
tries principally because of the strik-
ingly close relation of group structure
to experiment. That comparatively
elementary relationship provides the
ultimate basis for more complex uses of
group theory. I will discuss these uses
in a subsequent column. •
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