Q:What's the best x-ray source? A:KMS Fusion,Inc.

At KMS Fusion, we're anticipating your needs for soft x-ray detectors, calibration and sources. Fifteen years of experience in laser fusion research has enabled KMS to develop advanced x-ray diagnostic tools and capabilities.

Detectors

Bright-Cam is a real-time, gated MCP detector optimized for soft x-rays and extreme ultraviolet spectra. It can detect short x-ray pulses (0.25 ns response) and convert them to light. Use Bright-Cam for:

- ☐ Plasma spectroscopy
- ☐ Various pulsed x-ray sources
- X-ray laser studies
- Upconversion/laser characterization
- High-temperature shock breakout studies

KMS has expertise over a broad spectrum of x-ray and other detection technologies. We design custom x-ray components and offer inhouse calibration services. For more information on these and other products and services, please call or write:

3621 South State Street P.O. Box 1567 Ann Arbor, Michigan 48106 1-800-521-1524 anything more than the sum of the component parts (as might a book); however, the availability of three well-written and complementary reviews conveniently bound in a single volume makes for a useful general reference covering electronic properties of surfaces.

James L. Erskine University of Texas at Austin

Theory of Neutron Scattering from Condensed Matter, Volumes 1 and 2

Stephen W. Lovesey

344 pp. Clarendon, Oxford, 1984. \$59.00 each

Neutron scattering is a unique and powerful experimental tool for investigating condensed-matter systems. One can study routinely, via the neutronnucleus interaction, the structural characteristics of liquids and solids from the submicron range to the atomic scale, while the neutron-electron magnetic-dipole interaction permits the determination of magnetic structures. The versatility of the technique allows one to investigate interesting scientific problems not only in condensed-matter physics but also in chemistry, metallurgy, biology and fundamental physics. The beauty and power of neutrons as a probe of microscopic physics, however, are best revealed when one is interested in the time-dependent collective behavior of systems. Neutron scattering is the only experimental method available to study the nature of excitations such as magnons, phonons, rotons and excitons, and to investigate diffusion and tunneling in the full range of crystal momenta and energies. Neutron scattering provides fundamental information about the properties of condensed-matter systems that cannot be obtained with any other experimental technique.

The classic reference book presenting the traditional topics of condensedmatter physics of interest to neutron scatterers has been Walter Marshall and Stephen Lovesey's Theory of Thermal Neutron Scattering (Oxford U.P., New York, 1971). That text covers the basic theoretical concepts needed for the interpretation of experimental neutron-scattering data. Lovesey, who is a theoretical physicist at the Rutherford-Appleton Laboratory in England, has updated the original text to produce Theory of Neutron Scattering from Condensed Matter. He has split the original text into two volumes, the first of which covers nuclear scattering, while the second is devoted to magnetic scattering. The references and examples have been updated, and there are some new examples (particularly in Volume 1). However, the new book, for

the most part, is identical to the original work. In this regard it would be more appropriate to refer to it as a second edition of Marshall and Lovesey. It is only a little longer than the original text (681 pages versus 608).

One of the important advantages of neutrons is that they are a weakly interacting probe, so that the physical properties of the sample are generally not distorted by the scattering process (in contrast to electron scattering, for example) and hence the interpretation of experimental data often reduces to a proper description of the collective behavior of the system. As a result, the book spends much of its time describing the basic concepts of condensed-matter physics, such as magnons and phonons; these are often good discussions in their own right. As advertised in the title, there is essentially no discussion of experimental techniques, and consequently the text is not helpful for the experimenter, who is interested in taking data. For diffraction experiments George Bacon's Neutron Diffraction (Oxford U.P., New York, 1975) should be consulted, while for inelastic scattering no experimental textbook is available

One of the deficiencies of the present pair of volumes is that they provide no coverage of new subjects that have become prominent since the writing of the first edition. For example, there is no discussion of liquid crystals, spin glasses, low-dimensional systems, charge-density waves or the physics that can be revealed with newer experimental techniques such as backscattering, spin-echo spectrometry and smallangle scattering, or with pulsed neutrons. Nevertheless the two volumes constitute the best neutron-scattering book available for condensedmatter physicists.

JEFFREY W. LYNN University of Maryland

Numerical Methods in Fluid Dynamics

Edited by F. Brezzi

333 pp. Springer-Verlag, New York, 1985. \$20.50

Numerical Methods in Fluid Dynamics contains the texts of four lectures given at the third 1983 session of the Centro Internationale Matematico Estivo, held at Como, Italy, in July 1983. These "state of the art" lectures are general discussions of the major numerical methods in computational fluid mechanics: finite-difference, finite-element, spectral and particle methods (the last category includes, among other techniques, the particle-in-cell method, the random-vortex method and particle methods in plasma physics). The contributors are among the lead-