i
{
F

GGRGNECRIRINE

From broken symmetry to chaos

Herman Feshbach

The low-lying energy levels of quan-
tum systems often exhibit a high de-
gree of symmetry: crystals, the rota-
tional levels of a deformed nucleus,
the most deeply bound states of had-
rons. However, all of these systems
violate the exact symmetries of their
Hamiltonians, exhibiting ‘“broken
symmetry.” Crystals and nuclei do
not meet the requirements following
from the translational and rotational
invariance of their Hamiltonians, and
hadron states violate the invariances
associated with the internal degrees of
freedom of strangeness and isospin.
In each of these systems, the symme-
try is broken by focusing observation
on a few of the degrees of freedom, so
that the symmetry the system does
exhibit is of reduced dimensionality.
As a group theorist would say, the
group associated with the broken sym-
metry is a subgroup of the one asso-
ciated with the exact symmetry.
Closely related to symmetry is “or-
der,” which describes the correlations
among constituents of the system. In
a crystal the order is nearly perfect
and the correlations have a long
range. Order in ferromagnetism is
measured by the magnetization; the
correlation scale is given by the size of
the magnetic domains. In nuclei the
collective degrees of freedom, which
describe the coherent participation of
many nucleons, are a manifestation of
order. Order is measured by the qua-
drupole moment in deformed nuclei.
If one adds excitation energy, order
tends to be reduced, until eventually,

a change in phase occurs: The crystal
melts, the liquid vaporizes to form a
gas, the spin orientation of the mag-
netic domains is randomized, the nu-
cleus may fission or—with enough
energy added—disintegrate into a gas
of nucleons. In each case, the highly
ordered phase is replaced by a less
ordered one. At the same time, the
broken symmetry is removed and ex-
act symmetry approached. Despite
their less ordered state, both the gas
and the liquid do satisfy rotational
and translational invariance, on the
average. For example, translation in-
variance applies to the average den-
sity of a liquid, but at any given
instant the liquid contains inhomo-
geneities. Several changes in phase
may occur, each one making the sys-
tem less ordered but bringing it (on
the average) closer to exact symmetry.

Disorder shows up well before the
phase changes occur. In nuclei, as the
excitation energy increases, the den-
sity of levels grows rapidly, so that the
number of modes of motion becomes
very large. Slow-neutron scattering
by nuclei gives very sharp resonances,
and one can use these resonances to
measure the energies and widths of
nuclear levels. The probability distri-
bution p(s) for the spacing s between
the energies of neighboring levels is
the “Wigner distribution”:

pls)ds = (7/2)s/D?) e~ "4/P" gg

where D is the average spacing. The
distribution of the widths is the statis-
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tical y* distribution for one degree of
freedom. These are remarkable re-
sults because these distributions can
be obtained by assuming that the
energy levels are eigenvalues of a
Hamiltonian with random matrix ele-
ments and that the widths are propor-
tional to the square of the components
of the eigenvector of that Hamilton-
ian. The distribution of the matrix
elements is assumed to be invariant
under a change in the basis wavefunc-
tions. These elements—the widths
and energy-level spacing—are effec-
tively random; the specific properties
of the system enter these distributions
only through the average values of the
width and spacing. These properties
of randomness hold not only for nu-
clei, but for atoms as well, for bound
states as well as unbound ones. This
random behavior is of great practical
value because it allows us to use
statistical concepts to predict average
reaction cross sections, expressing the
results in terms of average quantities
obtained from simplified versions of
the many-body problem.

Some authors have speculated that
this apparently random distribution of
nuclear levels is an example of quan-
tum chaos. Although the systems we
are considering are described by the
Schrodinger equation, at sufficiently
high excitation they become effective-
ly random, a phenomenon that re-
minds one of the chaos of classical
dynamics. As in classical dynamics,
ordered states do not disappear com-
pletely. For nuclei, the excitation en-
ergy added by an incident projectile
can go into a collective mode, produc-
ing a resonance in the cross section
that rises above a background origi-
nating in the random behavior of the
system.

For crystals, the mechanisms lead-
ing to disorder are not clear. Some
theorists have considered a two-di-
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mensional model consisting of spins
with nearest-neighbor interactions.
In that “planar Heisenberg” model,
excitation energy leads to spin-vortex
formation. At low temperatures, a
vortex will overlap an antivortex. The
net vorticity is then close to zero. As
the temperature increases, these
bound vortex pairs separate and final-
ly become free, forming a “gas” of
vortices, which carry the disorder. At
high temperatures, correlation
between spins becomes short ranged,
unlike the long-range correlation at
low temperature. One thinks of the
vortices as defects that become free to
move at sufficiently high temperature.
For three-dimensional systems, one
can speculate that the defects are
dislocations and that these will multi-
ply with increasing temperature, with
a corresponding increase in disorder.

Manifestations of this disorder
should grow more and more observ-
able as the energy excitation increases
before the transition to the defect
fluid. Will these reflect a chaotic
behavior analogous to that exhibited
by atoms and nuclei? Several models
have shown signs of such chaotic be-
havior. For example, in a model with
competing ferromagnetic and antifer-
romagnetic interactions, a phase of
the system is formed in which strong
and weak spin correlations appear in
a chaotic sequence as one probes the
system at successively larger dis-
tances.

Recently developed theories of the
history of the universe presume an
initial high-temperature regime in
which the exact symmetries are all
satisfied. As cooling proceeds, these
symmetries are successively broken
and separate interactions or particles
become identifiable. The first to make
its appearance is gravity; next the
hadron symmetry is broken, and bar-
yons emerge. Finally, the electroweak
symmetry is broken giving rise to
separate electromagnetic and weak
interactions. Order is carried by the
symmetry-breaking Higgs fields. Ini-
tially these fields are random, but as
the universe cools they become succes-
sively more ordered, thereby inducing
the symmetry breaking. The role of
chaos in these transitions has not been
studied.

Quantum chaos, its characterization
and its consequences—particularly as
a change of phase is approached—
form a fascinating area of research, of
fundamental importance. Under
what circumstances do many-body
quantum systems exhibit chaotic be-
havior, and what are the observable
consequences? These questions are as
yet unanswered. O
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