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One motivation for the intensive study
of nonlinear physical systems is the
hope that, despite their complex struc-
tures, they might possess universal
features shared by entire classes of
‘similar nonlinear processes. This hope
was strikingly realized several years
ago when Mitchell Feigenbaum (then
at Los Alamos, now at Cornell) discov-
ered that a few universal ratios—
independent of any dynamical de-
tails—characterized all systems whose
periods doubled repeatedly as they
‘approached turbulence (pHYSICS TODAY,
March 1981, page 17). At the point of
infinite period doubling, the orbits of
Feigenbaum’s system showed a com-
- plex behavior in which one could dis-
cern a scale-invariant, or fractal, struc-
ture. Recently a team of theorists has
developed a method for describing a
new global structure of these fractal
objects. The predictions generated by
this formalism agree quite well with
experimental measurements per-
formed at the University of Chicago on
a fluid as it approached turbulence by
two distinct paths.

The theoretical approach was devel-
oped' by Thomas C. Halsey, Mogens H.
Jensen and Leo P. Kadanoff (Universi-
ty of Chicage), Itamar Procaccia (Weiz-
mann Institute) and Boris 1. Shraiman
(Bell Labs). It is perhaps easiest to
understand their work as it applies to
the particular dynamical system on
which it was tested® experimentally.
The system was a forced Rayleigh-
Bénard experiment, and the measure-
ments were performed at Chicago by
Albert Libchaber, Joel Stavans, James
Glazier and Francois Heslot. Their
apparatus consists of a container of
mercury heated from the bottom and
cooled from the top. When the tem-
perature gradient becomes sufficiently
large, the fluid develops two convective
rolls, flowing up in the middle and
down along the walls. With a stronger
gradient, the convective rolls begin to
oscillate such that an imaginary line
between the rolls and parallel to their
axes swings back and forth horizontally
with small amplitude.

In addition to the natural frequency
associated with this convective oscilla-
tion, the system is driven at a second
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Critical orbit is the trajectory of a dynamical system in phase space
as the system becomes turbulent. The orbit shown is the intersection
of a distorted torus with a plane. It was determined? from temperature
measurements of a mercury cell undergoing convective and

electromagnetic oscillations.

frequency by an electromagnetic sig-
nal: A vertical ac current is applied to
the center of the conducting mercury
fluid while a dc magnetic field is
imposed horizontally, parallel to the
axes of the convective rolls. When the
two frequencies are incommensurate,
the interaction between them causes
the system trajectory to trace out a
torus in phase space. Asthe amplitude
of the ac current increases and drives
the system toward turbulence, the
torus becomes greatly distorted. The
intersection of this distorted torus with
a plane, as determined by experimental
measurements on the system near the
onset of chaos, is shown in the figure on
this page. This so-called critical orbit is
derived from readings of the tempera-
ture of the system at discrete times
separated by the period of the forcing.

One glance at the critical orbit shows
that some regions of phase space are
visited more frequently than others.
The new formalism is aimed at describ-
ing these density variations, or the
bunching of points in this critical orbit
(or in similar structures generated by
other approaches to chaos). It starts by
expressing the probability p; that other
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points might fall within some distance [
of a given point in terms of a scaling
index a,(l)
p‘ o fcr,ll'i

The scaling index a can assume a range
of values. The distribution of values is
called the spectrum of singularities and
is denoted by the function f(a). This
function roughly expresses how many
times each kind of scaling occurs; one
may therefore think of f as a kind of
entropy. Thus the critical orbit is
described as if it were composed of
interwoven sets of singularities, each
with a different value of a.

To describe a particular physical
system with this formalism requires a
model of that system. Several experi-
ments on the forced Rayleigh-Bénard
system have indicated that its critical
orbit can be modeled well by a nonlin-
ear mapping of the circle onto itself.
That circle map has the form

6,,, =0, +o—(a/2m) sin(276,)

Using this map, the theorists predicted
that the curve of f versus a would look
like the red curve in the figure on page
18. Experimental data were similarly
processed to yield an f vs. a curve,
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Spectra of
singularities, 7,
indicate roughly how
often a particular value
of the scaling index a
occurs. The red
spectral curve
describes the critical
orbit of the figure on
page 17 for a forced
Rayleigh-Bénard
system approaching
turbulence along a
quasiperiodic route.
The black curve
describes the system
approaching
turbulence by period
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representative points of which are de-
picted in red in the figure. The theo-
retical and experimental curves agree
quite well. The spectrum shown in
black shows similar agreement of the
theory with experiment when it was
applied to a forced Rayleigh-Bénard
system that was approaching turbu-
lence along a period-doubling route.

Starting in part with the pioneering
studies of Benoit Mandelbrot (IBM) a
decade ago, work on fractal systems has
flourished in recent years. The basic
idea of representing the global strue-
ture of fractals in terms of the formal-
ism described here originated® with the
work of Uriel Frisch (Nice Observatory)
and Giorgio Parisi (University of Rome)
on well-developed turbulence. Later,
Roberto Benzi (Centro Scientifico IBM,
Rome), Giovanni Paladin (University of
Rome), Parisi and A. Vulpiani (Univer-
sity of Rome) took the same ideas and
used® them to characterize the magni-
tude of the velocity at a point (a) and
the number of points with that velocity
(f). Halsey, Paul Meakin (DuPont) and
Procaccia later explored® the concept
as it applies to aggregation phenomena,
but they did not write f as a continuous
function in that work.

The quasiperiodic route to chaos. The
forced Rayleigh-Bénard system is one
of a class of systems with two driving
frequencies. If the two frequencies are
commensurable, the system locks onto
the initial frequency ratio over some
finite range of the control parameter,
in this case the amplitude of the ac
current. A system driven in this man-
ner may approach chaos along the
period-doubling route, in which the
period successively doubles as the con-
trol parameter increases. The black
curve in the figure above corresponds
to this case.

However, if the two frequencies
(whose ratio is called the winding
number) are incommensurable, such
mode locking does not occur, by defini-
tion. The power spectrum of the sys-
tem response in this case can be ex-
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doubling.

pressed as the sum of linear combina-
tions of the driving frequencies, with
the number of such combinations in-
creasing as the system approaches tur-
bulence. In this mode the system is
said to take the quasiperiodic approach
to chaos. This approach is depicted in
the red curve of the figure above.

Scott Shenker (Xerox Palo Alto Re-
search Center) first analyzed quasiper-
iodic systems phenomenologically in
1982. Soon thereafter Feigenbaum,
Kadanoff and Shenker studied these
quasiperiodic systems in more detail, as
did a group consisting of Stellan Ost-
lund (University of Pennsylvania), Da-
vid Rand (Warwick, England) and
James Sethna and Eric Siggia (both of
Cornell). They all modeled the system
using the nonlinear mapping of the
circle onto itself. These studies found
that the transition to chaos occurs in a
universal way when the winding num-
ber equals (V5 — 1)/2, the classic irra-
tional number called the ‘“golden
mean.” This case is the easiest one to
analyze theoretically and study experi-
mentally.

Subsequent experiments on Ray-
leigh-Bénard cells with winding
numbers fixed at the golden mean
verified the universal properties pre-
dicted by these analyses. In a Ray-
leigh-Bénard cell with water as the
fluid, Aaron Fein (now at IBM, York-
town Heights) and Mike Heutmaker
and Jerry Gollub (both at Haverford
College) observed® some evidence for
spectral self-similarity; that is, they
found that the scaled power spectrum
had the regular pattern of peaks pre-
dicted by the theory. Stavans, Heslot
and Libchaber performed” a similar
experiment, but they managed to have
better control over the winding number
by selecting mercury as the fluid and
exciting it electromagnetically rather
than thermally. They also found the
regular spectral pattern, and they were
able to measure a universal parameter
as well. These measurements indicat-
ed that the experimentally observed

critical orbit could be represented well
by the corresponding orbit in the ci
map.

The current work on a um\rersnl
formalism contrasts in some ways wi i1
Feigenbaum’s discovery of unive
properties in the period-doubling rou
to chaos. Kadanoff points out that
much of the theoretical work to date
has concentrated on detailed analy
of special points in phase space, wher
as his formalism allows a global chara
terization of phase-space orbits. Fei-
genbaum suggests that the method
introduced by Kadanoff and his col-
leagues, by seeking only coarse rather
than detailed information about global
properties, has a very good chance of
being verified experimentally. He
compares the f vs. @ curve to a thermo-
dynamic function in which one has
summed over the microscopic informa-
tion, which is also available, to obtain
quantity that can be measured easily.
He also comments that, because the
new approach is expressed in terms of a
statistical-mechanics formalism, it
forges some connections between chao-
tic physics and more standard physics.
He is working on still more thermody-
namic considerations.

Ostlund characterizes the method as
providing a phenomenological descrip-
tion of any object, especially useful for
a fractal with many scaling exponents.
He feels it to be complementary to
studies that calculate the specific expo-
nents from a detailed renormalization
theory. Indeed, the first papers to
discuss the f vs. @ formalism did not
use renormalization theory, but rather
assumed a given mapping and generat-
ed simulated data. Since then, Kadan-
off, Jensen and David Bensimon (Chi-
cago) have applied® renormalization
techniques to derive the same results
from first principles.

—BarBara G. LEvi
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