

letters

Funding big science

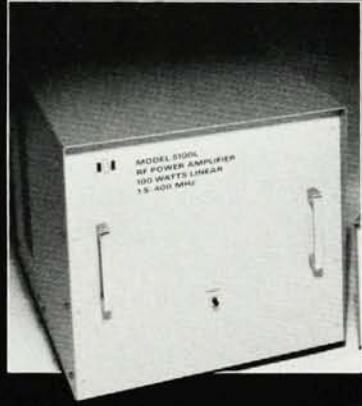
I read with regret Leon Lederman's reply to the letter by Rustum Roy (September, page 9) regarding US priorities for science-research funding. To respond to Lederman's presumably facetious suggestion that "there is no such person as Rustum Roy and that the letter is a spoof," I must point out that Roy is not only real but a highly respected physicist. I am a materials scientist who does not share Roy's views on funding; I would like to see more money, not less, spent on such "pure" studies as astronomy and elementary-particle physics. But I think it is unfortunate to resort to *ad hominem* arguments of the sort given in Lederman's reply.

The history of cross-fertilization among subfields of physics is rich in this century. Twenty years ago the same people who made progress in nonperturbative problems in condensed-matter physics (BCS theory, polaron problems) found they could contribute to strong-coupling problems in particle physics. More recently, renormalization-group approaches and general ideas about symmetry breaking have transcended the parochialism of physics specialties and have permitted particle physicists and materials scientists to benefit from each other's work. In my department, we materials scientists benefit from the presence of such people as Thomas De Grand, nominally a particle theorist, and James Randa, similarly trained, to help us understand incommensurate lattices.

Perhaps the issue lurking behind Roy's letter is his own reference to "all the 'lesser' breeds of physicists who work with semiconductors, icosahedral metals, photoresists" and so on. I do not find condensed-matter physics to be a lesser breed of anything, nor the scientists working in this field inferior to anyone. I work in condensed-matter because it is beautiful and elegant, and perhaps just plain fun. Probably both Roy and Lederman do their work for the same reasons. By his defensive sarcasm regarding "lesser" breeds of physicists, Roy has revealed somewhat of a professional inferiority complex with regard to less applied physicists, and Lederman has aggravated that situation by suggesting that Roy is

fictitious!

It might be useful for us all to observe that the best materials science in the US gets done at places like Cornell, MIT, Berkeley and Illinois, which also have strong programs in unapplied areas of physics such as elementary-particle studies. It is by no means clear that scientific research is a zero-sum game. As a taxpayer I object to waste in any public expenditure, whether it is bad materials science or bad high-energy physics. But from where I sit, we taxpayers are getting a pretty big bang for our buck. High-energy physics has been damned pretty lately!


JAMES F. SCOTT
University of Colorado
Boulder, Colorado
10/85

ROY REPLIES: I am sorry that James Scott missed my intended tongue-in-cheek tone in my reference to "lesser breeds, without the law" (to complete the quotation), because he presents a well-reasoned (indeed the standard) case for retaining the *status quo* in science funding.

Of course high-energy physics "has been damned pretty lately"! So has some radioastronomy, femtosecond spectroscopy and so on. But even in the very language of that phrase a citizen concerned with lack of science teaching for black youth or with aid to dependent children, or a materials physicist observing the flight of middle-tech, high-tech, any-tech industries to the East, might detect a whiff of Marie Antoinette's "let them eat cake."

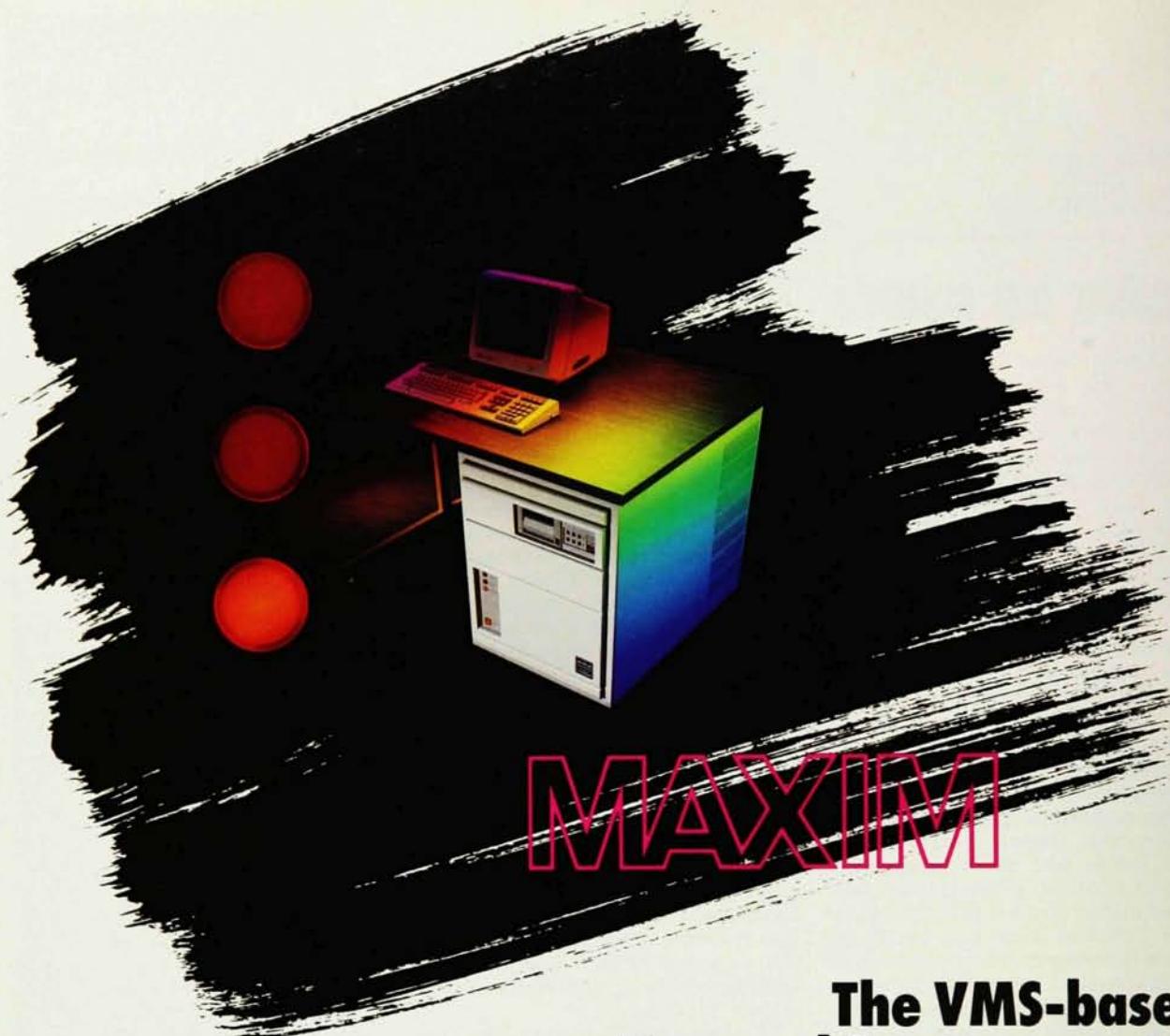
My proposition to the science and engineering community is simply that the present allocation of resources between big and little science, between science irrelevant to industry and science relevant to it, between esoteric science and basic science, is unbalanced toward the big, irrelevant, esoteric side. I do not propose eliminating or "zeroing out" this major field of science, but asking broader questions about its place in a balanced tax-supported science. And moreover, it is my case that unless we—chemists, physicists, whatever—pay a great deal more attention to human societal concerns we will be in trouble. My themes are hardly novel. I quote three recipients of the

100Watts of RF Power from 1.5 to 400 MHz...

ENI HAS IT COVERED.

This single unit is so incredibly versatile it can replace several you may be using now. It's an extremely broadband high power, solid state, Class A linear amplifier. It's rated at 100W from 1.5-400 MHz. But it can provide 200 Watts from 1.5-220 MHz. All you need with the 5100L is any standard signal or sweep generator and you've got the ultimate in linear power for such applications as RFI/EMI testing, NMR, RF Transmission, ultrasonics and more.

And like all ENI power amplifiers, the 5100L features unconditional stability, instantaneous failsafe provisions, and absolute protection from overloads and transients.


The 5100L represents the pinnacle in RF power versatility. There's nothing like it commercially available anywhere.

For more information, a demonstration, or a full line catalog, please contact us at ENI, 100 Highpower Road, Rochester, NY 14623. Call 716/427-8300, or telex 671 1542 ENI UW.

ENI

**The advanced
design line of
power amplifiers**

The VMS-based Personal Supercomputer

MAXIM brings supercomputer power to the office of the individual scientific researcher. MAXIM is a VMS-based system where a powerful CSPI array processor—either single or double precision—is synergized with Digital Equipment Corporation's MicroVAX II to boost computational speed. The result? Performance up to 50 times faster than a VAX 11/780. Plus total independence for the researcher. FORTRAN compatibility. A VMS-development environment. And economy of space and dollars.

MAXIM Action...Here's how to get it.

Call Toll Free 1 800 325-3110

(In Massachusetts call 1 617 272-6020)

Ask for your free MAXIM brochure today.

CSPI

COMPUTATIONAL SPEED FOR
SCIENCE AND ENGINEERING

40 Linnell Circle, Billerica, Massachusetts 01821

VMS, MicroVAX II, and VAX 11/780 are trademarks of Digital Equipment Corp. MAXIM is a trademark of CSP Inc.

Circle number 13 on Reader Service Card

Nobel Prize for physics, starting with Albert Einstein:

Concern for man himself and his fate must always form the chief interest of all technical endeavors, concern for the great unsolved problems of the organization of labor and the distribution of goods—in order that the creations of our minds shall be a blessing and not a curse to mankind. Never forget this in the midst of your diagrams and equations.

If we do not remember this concern, the very same esoteric science so prized by some will suffer an even worse fate. The total scientific-technological system in the US has been weakened to such an extent by the collapse of one component, applied relevant science, that many see sheer technological disaster ahead.

I am afraid that the day is past when appeals to "damned pretty" and basic (old terminology) science were enough. The physics community represents some of the most talented (with respect to a subset of human operations) people on Earth. Can the US in 1986 afford to let an increasing fraction of them "do their thing" with public funds when they might well be doing other, equally interesting physics for the nation? Here is Arno Penzias (Bell Labs) speaking for a new approach (*Science and Government Report*, 15 April 1985):

What bothers me are those 40 names on each of those papers in *Physical Review Letters*. What else could those people be doing? They are among the brightest human beings in this country today.... I am saying that if we set up a society which says the biggest, the most glamorous, the most high-powered, the most prestigious, the most arcane, the smallest is *the* thing—go after it—and then we find our best people going after it, then we are in trouble, because we don't have a lot of those best people.

In the same interview Penzias also talks of the refuge many take in the term "basic science"—never defined. I have redefined basic science (using the philosophical fallout from the new physics) by starting with the human reference point. Basic science is that science which relates most closely to the human condition. I believe that in the coming era of more democratic control of publicly supported science only such a definition will hold up among philosophers and politicians. On this basis we see that science relevant to agriculture, shelter, health and jobs is really basic, with concentric rings of diminishing "basicity" going outward. This is a "Copernican" revo-

lution advocating an anthropocentric view of science. A major trigger for such a view is to be found in Percy W. Bridgman's work:

Finally, I come to what it seems to me may well be, from the long-range point of view, the most revolutionary of the insights to be derived from our recent experiences in physics.... This is the insight that it is impossible to transcend the human reference point.... We are now approaching a bound beyond which we are forever estopped from pushing our inquiries, not by the construction of the world but by the construction of ourselves. The world fades out and eludes us because it becomes meaningless.

Mine is not so much a criticism of high-energy physicists' priorities as a St. Paul's Macedonian call "to come on over and help" the US technology-based economy.

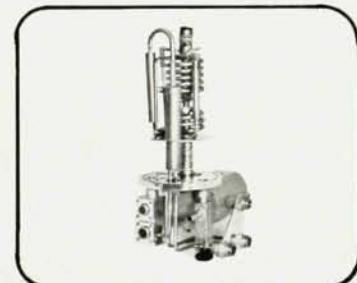
RUSTUM ROY
Pennsylvania State University
2/86 University Park, Pennsylvania

The letter by Rustum Roy and the reply by Leon Lederman gave me a remarkable introduction to the controversial nature of the proposal to build a Superconducting Super Collider. Having previously been only peripherally aware of the proposed machine and naturally captivated by its gargantuan dimensions, I appreciated the food for thought that Roy's letter gave me. Lederman's reply, on the other hand, left me hungry for an equally thoughtful presentation of the opposing view.

The rational debate on SSC that Lederman called for was disappointingly absent from his own letter. He merely encouraged his readers to "react appropriately" to Roy's points and then proceeded to ridicule the person and the points. This tactic is usually a last resort when the weakness of one's position prevents it from standing on its own merits.

The fact that several of Lederman's colleagues joined in the ridicule does not weight my opinion in his favor. I wonder whether there are other colleagues who read the letter and whose knees did not jerk, but who, like myself, were stimulated to ponder broader aspects of the issue than the simple desirability of advancing this one discipline of physics.

The reference to "virtual money" attempted to dismiss Roy's points as figments of the imagination of a nonexistent author. But surely the SSC we are talking about is not just a hypothetical device for performing *gedanken* experiments. Rational science policy dictates that priorities for finite R&D budgets be debated well in ad-


Your CRYOGENIC CONNECTION

announces

AT LAST

A 4.5 K Closed Cycle
Refrigerator System
Under \$25,000.00

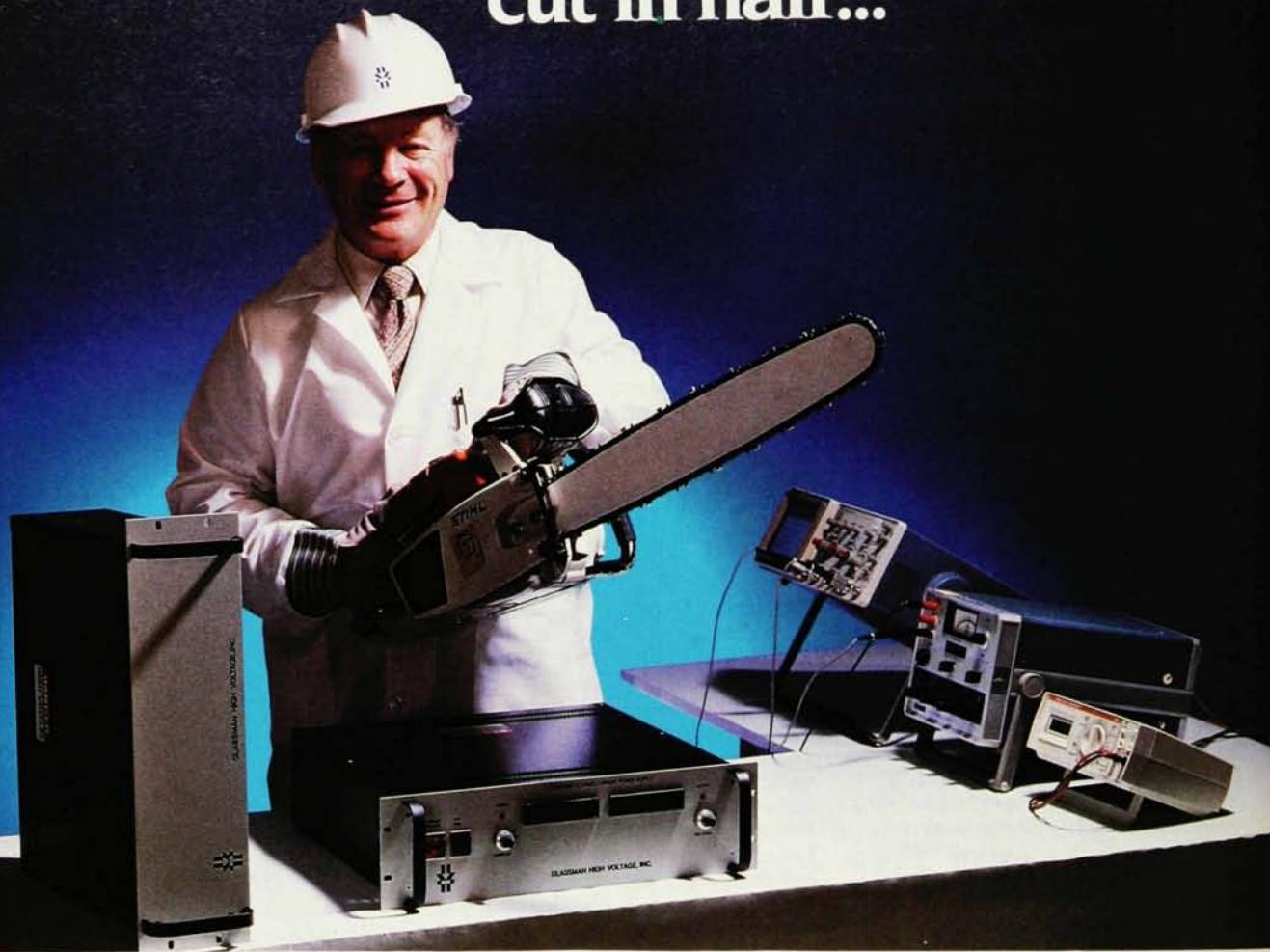
- Laboratory Size and Industrial Quality
- 1/4 Watt at 4.5 K

Model LTS-21-H, Temp.

For:

- Helium Reliquefiers
- Detector Cooler
- Low (or no) Boiloff Dewars

OPTIONAL FEATURES:


- Variable Temperature Control
- Optical Access
- Vibration Free Mounting

Cryosystems offers a full line of 4.5 K Closed Cycle Refrigerator Systems from 1/4 to 4 Watts with variable temperatures from 2.5 K to 300 K.

Also Available—FTIR, VSM, Mossbauer and Special IR Systems. We Custom Engineer to Your Needs.

To learn more about your CRYOGENIC CONNECTION
write or call:

Another high voltage power supply cut in half...

The WH Series... 500 watts, 1/2 the space, 1/2 the weight, and we even cut the price!

When Glassman packed 500 Watts @ 80kV into 10 $\frac{1}{2}$ " of rack space a few years ago, it was a pretty impressive feat.

Although that may seem commonplace today, the next step, which we've just taken, isn't. We've packed 500 watts @ up to 75kV in half that space... 5 $\frac{1}{4}$ ". The WH Series is one half the size and weight of the PG Series models it replaces. In it, you get more regulated high voltage in less space than any other supply we know of.

To accomplish this, we've developed some new circuitry that we believe has increased the reliability of our already sound, field proven switch-mode technology.

If light weight, compactness, tight regulation, and high reliability are major factors in your high voltage power supply requirements, then call John Belden at 201-534-9007 for complete details on the new WH Series.

Innovations in high voltage power supply technology.

GLASSMAN HIGH VOLTAGE INC.

Route #22 (East), Salem Industrial Park, P.O. Box 551, Whitehouse Station, N.J. 08889
(201) 534-9007 • TWX 710-480-2839

Circle number 15 on Reader Service Card

letters

vance of the appropriations that make the money real.

Lederman's concluding platitudes also do not contribute to a rational dialogue but, it seems to me, seek to isolate particle physics in an ivory-tower bastion surrounded by a world of people beset with overwhelming problems.

JIM STOFFEL(S)
10/85
Richland, Washington

The nobility in their grand palaces, contemplating "the transcendent beauty and philosophical depth" of their works of art, have heard the cries of the peasants and have told them to eat virtual funding.

JOSEPH F. LOMAX
9/85
Evanston, Illinois

The reply of Leon M. Lederman to the very reasonable questions on government funding of basic big science asked by Rustum Roy in a PHYSICS TODAY letter is almost its own caricature.

Lederman's beatific extolment of the philosophical and cosmological transcendence of high-energy insights and million-dollar detectors exhibits just the hubris that Roy cites. Of course Lederman is no more an unprejudiced judge of his claim on taxpayers' support than is any other beneficiary of government subsidy. His virtual-money trope is, however, apropos: Lederman's world of virtual particles is paid for by the virtual money that the government has virtually stolen from our savings accounts—by its inflationary monetary and "deficitary" fiscal policies.

A fundamental issue for the economy and also for society is our inability to contain government spending. Although scoffed by Lederman as a virtual issue, the now firmly entrenched and massive Federal deficit spending has priced the US out of world markets by eroding US productivity, discouraged investment, robbed savings and debauched the currency. While a majority of persons wants to reduce government benefits, subsidies and grants, it is only the "unnecessary" ones and the "waste" that are considered dispensable. But what is waste or unnecessary to one person is someone else's bread and butter. Defense-program jobs are no less important to their holders than are the new high-energy detector, space telescope and scholarship grant to their beneficiaries. Trying to reach a consensus on reduction has repeatedly shown itself to be a fruitless hassle. The missing essential ingredient is the willingness of everyone to moderate *his own claim* on government. A slight reduction in

every benefit and *every* program would eliminate the deficit. But the necessary and sufficient condition is the willingness of all constituents to accept a little less, not just in someone else's subsidy, but in their own.

In the same issue (September, page 67), PHYSICS TODAY reports and comments on the British Kendrew report, which recommended reduced UK particle-physics expenditures. The column expressed the typical and expected reaction: righteous indignation whenever a reduction or even a nonincrease in some Federal science or educational grant program is proposed. What organization of note will have the courage to say that for the common good it will accept slightly less from the government for its members—or even be willing to resist the lobbying clamor for ever more Federal funds? If the physics establishment cannot exercise this restraint, how can one expect it from the missile makers, the "social securer," the city mayors, the school boards, the teachers' unions and the food-stamp recipients?

WILLIAM MOELLERING
10/85
Cincinnati, Ohio

I would like to comment on the letter by Rustum Roy and response from Leon M. Lederman concerning the funding of "practical" applied research vs. the funding of particle-accelerator research, or technological fruit feeding basic-research roots vs. research roots bearing technological fruit. Both men are obviously extremely devoted to and knowledgeable in their respective areas of research. Both also have very legitimate concerns for their branches of science. Objective discussions in forums like PHYSICS TODAY have the potential for providing very valuable input concerning the scientific policies of the US. I saw, however, something like disdain for Roy in Lederman's response: Indeed, I was amazed at Lederman's disrespect for Roy in his opening paragraph. Lederman's wording does not give me confidence in his ability to consider objectively the ramifications of a proposal of this nature, even though he may well possess this ability. Roy has a record of being in favor of applied science and has in fact made immense contributions to the field of materials science. His opinions deserve consideration.

Roy's offhand way of describing the costs of "a Bevatron here and the SSC there" would probably raise my hackles if those were *my* babies. I might also take offense at hearing my research gems called a "dead end in spinoff technology and employment." But I hope my initial indignation would simmer down to a skeptical appraisal of

continued on page 81

MAXIMIZED VALUE CONSTANT FRACTION TIMING SCA

Model 607
\$725.00

- Differential, Asymmetrical, and Symmetrical Window Modes
- DC Coupled Input
- Internal/External LL Baseline Input
- 25mV to 10V (400:1) Dynamic Range
- External Gate/Strobe Input
- Delay Range: 0.1 to 11.0 usec

Mech-Tronics
NUCLEAR
1701 N. 25th Ave., Melrose Park, IL 60160
(312) 344-0202

letters

continued from page 15

the opposition's point. The magnitude of the \$5-6 billion price tag for SSC used by Roy is surely appreciated also by SSC proponents. Projects like this inherently require sums of money that appear astounding, even to their supporters. However, at the risk of translating color TVs into meals for starving people, I suggest that SSC promoters remember what such a price tag looks like through the eyes of opponents to SSC: 5000 \$1 million research contracts, 50,000 graduate fellowships, much sought-after funding for projects at existing high-energy facilities.

SSC promoters might well have a similar vision of the billions of dollars already designated for SDI. "Big science" is now, and will be in the future, providing valuable information helping to expand technology in this country and in the world, as Lederman has written. However, the concerns of materials scientists, promoters of high-energy research and all groups seeking scientific-support dollars do indeed require "rational" debate in the strictest meaning of the word: objectivity vs. sensitivity.

PAUL CHAYKA
Fiber Materials Inc
Diddeford, Maine

10/85

should be considered on an equal footing therewith.

DAVID L. JOHNSON
Schlumberger-Doll Research
10/85 Ridgefield, Connecticut

•

I would like to comment on the recent article by Sheldon L. Glashow and Leon M. Lederman, "The SSC: A machine for the nineties" (March 1985, page 28). Although it is an otherwise interesting article, I found the strange mix of pride and nationalism unfortunate and inconsistent. I am thankful that the authors themselves seem somewhat embarrassed at suggesting pride as one of their four reasons for building the roughly \$3 billion machine, and well they should be. When language like this starts being used in articles directed at scientific colleagues (I presume this is why it appears in *PHYSICS TODAY*), one cannot help but suppose motivations other than scientific in origin—motivations perhaps more appropriate in some emotional experiential forum than in a scientific one. Furthermore, it is inconsistent to list contributions made to society by high-energy physicists—such as Andrei Sakharov or Godfrey Newbold Hounsfield, who invented the CAT scanner, or others—as contributions made by "us," and then to make distinctions based on national boundaries when talking about where SSC should be built. It is especially inconsistent after the authors have just pointed out how the benefits of such activity go beyond such demarcations. Certainly the physics to be done and the knowledge to be gained do not care where SSC is built.

I do not agree that pride, and certainly not pride mixed with the sort of nationalistic language used at times in the article, is an appropriate reason for doing very many things—much less for building SSC. The authors write: "When we were children, America did most things best. So it should again." Firstly, regardless of the truth value of these sentences, it is unnecessary and unfortunate language to many of us, Americans and otherwise. Secondly, if these sentences are meant as "rallying cries," then I suggest that they should rally us not backward to old ways of thinking, but rather forward—forward to the sort of thinking and example setting that are necessary if we are to live together on one planet, thinking of the kind that physicists have traditionally considered themselves capable of.

In hopes of attracting "the best and the brightest" I submit that it has always been the "adventure of ideas," together with the sort of Socratic humility exemplified by physicists such as Albert Einstein, that has been most persuasive. The internationalism of physics, with scientists from East and

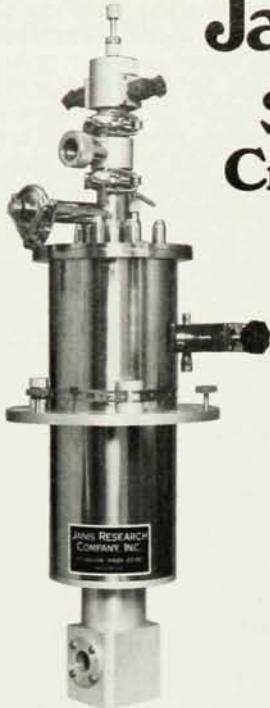
West meeting and communicating relatively freely with each other, has only added to this. However, pride and nationalism are not friends of truth or ideas in physics or anywhere else, and if they become prime movers in directing physics, I am sure more than a few physicists, present and potential, will either move on or distance themselves from the discipline in other ways.

Why build SSC? There are persuasive economic factors and "spinoffs" that will interest lawmakers, but what moves physicists engaged in pure research toward its construction? To be honest, we cannot promise anything from SSC. We simply do not know what is up there at those high energies. Most likely there are observations of primordial significance to be made, but we cannot make any promises about what they will be.

Why build SSC? Because of the fundamental human desire to understand who, what and where we are, and to find ways of expressing this as cogently and forcefully as possible. This is why we do most of the things we do, and that is what life, and ultimately SSC, is all about. Glashow and Lederman would consider this the "challenge" and "sense of duty" they associate with the whole project. They do not seriously address the very difficult questions of whether this is sufficient justification or is socially responsible in light of the many other ways and places that this huge sum of money could be spent. However, that topic was clearly not the point of their article, and that is fine. It is also beyond the thrust of this letter: Pride cannot and should not play a role in justifying SSC, neither scientifically nor, one would hope, otherwise.

Let us not muddle our justifications for SSC with things like pride and nationalism—at the very least, not among ourselves or in the pages of *PHYSICS TODAY*.

NORMAN H. BARTH
Albert-Ludwigs Universität
Freiburg
4/85


Federal Republic of Germany

•

It is clear from his response to my letter that Leon Lederman, a distinguished leader of a major national facility, still needs help to focus seriously on national science policies. He awaited Glashow's return to be sure I exist. (He obviously needs an increase in his library budget to buy an *American Men and Women of Science, Who's Who*, or *Science Citation Index*, as he didn't know how to check on scientists outside his subspecialty.) Because he was unable to reply to the policy questions I framed, he turned those over to the readers; I hope they will help him. He then asked for help in identifying

Janis Quality!

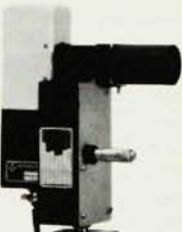
SuperVaritemp Cryostat Systems

- 1.5-300 K temperature range.
- 5 Watt cooling capacity.
- Optical access along any direction.
- 0.75" O.D. tails for magnetic measurements.
- Fast sample interchange.
- Automatic temperature control.
- Low helium consumption.
- Reliable proven performance.

JANIS RESEARCH COMPANY, INC.

2 Jewel Drive, Wilmington, MA 01887 • Tel: (617) 657-8750 Telex: 200079

Circle number 43 on Reader Service Card


SPECTRORADIOMETERS

Ultraviolet • Visible • Infrared

586
SERIES

LOW COST
(Under \$4000.)

780
SERIES

- General purpose
- High sensitivity
- Fully portable

790
SERIES

- Double monochromator (low scatter) for UV measurements
- Fully portable

Send for Bulletin S-1
Call Collect for Application Assistance

international light INC

Specialists in Light Measurement Since 1965

DEXTER INDUSTRIAL GREEN, NEWBURYPORT, MA 01950 U.S.A.

■ TEL. 617-465-5923

■ TELEX 94-7135

Write for name of sales representative in your area (over 40 countries worldwide)

Circle number 44 on Reader Service Card

letters

which committee should decide the spending of public funds. Finally, he needs help in identifying the myriad new technologies of our time that are coming into being daily and providing jobs and economic health without any benefit of the fundamentals of atomic or nuclear physics.

I called for a new *balance* of research support between basic atelesic research (without social purpose) and basic telestic research (linked to societal goals). I aver—and prove beyond any shadow of doubt in my book—that the ratio of atelesic to telestic research is negatively correlated with national technological health. (Just compare Japan, the US and Britain to understand my point.) While my vision of that balance finds plenty of room for the creativity of particle physics, I am willing to bet that the vast, vast majority of even US scientists would find that the existing balance is tilted way over toward particle physics.

Lederman quotes approvingly the bad technological judgment of the *Times* of London. The following technologies—recognizable by all citizens—have had nearly zero, or negative, input from his business: “wonder” drugs, major chemicals, the “Green Revolution” and most of US agriculture and the US airframe industry. It is noteworthy that it is in these areas where US exports are strong.

I am hardly impressed by Lederman’s waving the flag of “fundamental [or basic] science,” and here find support in the statements by Arno Penzias (who *does* exist and is vice-president of Bell Labs) quoted in *Science and Government Report* (15 April 1985):

... let us not pretend that what we experiment [with in particle physics] is, in fact, going to illuminate what happens in that part of the arena of our knowledge and experience that’s useful for us.

And so when you speak about it, we wrap ourselves in the flag of saying, “It is basic.” Yes it is “basic.” But one of the things you don’t get away with... at Bell Labs is “it’s basic.” I don’t care if things are “basic” or not; I want them to be interesting.

Lederman seems to have missed my point about private vs. public support. The excellence and creativity in particle physics should indeed compete for private funds with the same qualities in art and music. These are the “consumption goods” of any culture, and the sooner a free-enterprise society grasps that point, the healthier will be its enterprise. It is sheer scientific dishonesty to claim that particle physics is an “investment good.”

In a democracy, the committees of

TENNELEC

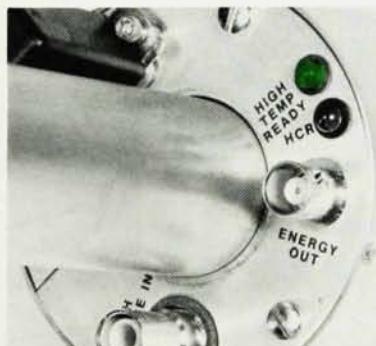
CP Series High-Purity Coaxial Germanium Detector Systems

DESCRIPTION

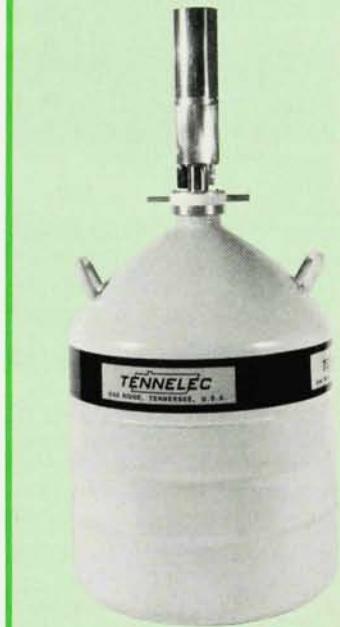
TENNELEC's high-purity Coaxial Germanium detector systems are designed to provide the nuclear spectroscopist with the performance and reliability required for the detection and analysis of gamma radiation in the range of 40 keV to 10 MeV. These detector systems can be **stored indefinitely at room temperature** but are designed to operate at near liquid nitrogen temperature (77° Kelvin).

Each system consists of a high purity semiconductor germanium detector, vacuum cryostat, liquid-nitrogen dewar, charge-sensitive preamplifier and cable pack.

TENNELEC's semiconductor germanium detectors are produced from germanium crystals grown by **TENNELEC** at our Oak Ridge, Tennessee facility. By producing our own crystals, **TENNELEC** has complete control over the quality, reliability and performance of the entire system.


SPECIFICATIONS AND FEATURES

A temperature sensing circuit has been built into the preamplifier electronic package. This circuit is very sensitive to the temperature of the detector element and internally disables the high voltage when the temperature rises to an unsafe level. An LED illuminates red when this disabling circuit is activated. This same LED illuminates green when the system is cold and bias may be applied.


A High Count Rate LED is also provided and illuminates when the count rate of the system exceeds the capability of the preamplifier.

A cable pack is provided with all **TENNELEC** CP Series Systems. Included are a coaxial high voltage cable (SHV female to SHV female, RG-59A/U, 75 ohm) and a preamplifier power cable. The preampli-

fier power cable contains three (3) RG-174, 50 ohm coaxial cables. When connected to and powered by a **TENNELEC** amplifier, such as the TC 244, one cable carries the signal from the detector preamplifier to the amplifier; the second carries test pulses routed through the amplifier to the preamplifier; and the third is for the Differential input to **TENNELEC** amplifiers.

- Uniline designed cryostat
- Stored indefinitely at room temperature
- Unlimited recycles to room temperature
- High voltage internally disabled
- Charge-sensitive cooled FET preamplifier
- High rate LED
- "Red" warm, "Green" cold LED
- **TENNELEC** Produced Germanium

For more information,
write or call today.

TENNELEC
INC.

601 Oak Ridge Turnpike, P.O. Box 2560
Oak Ridge, Tennessee 37831-2560 USA
Telephone 615-483-8405/TWX 810-572-1018

● Münchner Strasse 50, D 8025 Unterhaching
West Germany
Telephone 089/611-5060/TWX 841-521 5959 FRIE D

Circle number 24 on Reader Service Card

MAGNETIC ANALYSIS... AT YOUR FINGERTIPS

Quantum Design's Magnetic Property Measurement System (MPMS) provides the materials investigator with precise measurements of magnetic moment and susceptibility. Integrating an ultrasensitive VHF SQUID detection system with a unique sample environment, detailed analysis of experimental samples is available over a broad range of temperatures and magnetic fields.

- Fast, Stable Temperature Control 1.7K to 400K
- ± 5 Tesla Magnetic Field Range
- 200 MHz SQUID System
- Both Longitudinal and Transverse moments can be measured
- Measurement Sequences and Data Acquisition are completely automated

A Touch Screen II Computer* puts total control of the MPMS at the researcher's fingertips, providing both data display and direct command over every aspect of system operation.

*Registered trademark of the Hewlett Packard Company.

Call us today for a brochure
about the MPMS

QUANTUM
DESIGN

11568 Sorrento Valley Rd. ■ Suite 15
San Diego, California 92121
Call us (619) 457-0248
Telex: 4943226

letters

Congress do, should and will decide which science should be supported. Up to now we in the science community have hornswoggled them by using specious arguments in fuzzy language promising vague goodies to get money for each of our pet "sciences." By the sheer chance event that the engineering feat of constructing a nuclear bomb was credited to "atomic and particle" physics (and many of the very considerable engineering contributions were made by the deeply involved and brilliant physicists), particle physics and physics in general have enjoyed a prejudice in the US policy community. Thus this leftover gratitude helps that one community in getting incredibly disproportionate (with respect to its societal value) funds. Other areas of science and technology that deliver the goods that Congress wants, such as all of engineering and polymer synthesis, get shortchanged.

I will continue to work for balanced funding of particle physics, solid-state physics, chemistry, geology and so on. I even offer a quantifiable definition for nationally funded "basic science": It is that which is closest to human needs and which holds out hopes for the greatest effect on the greatest number of the nation's citizenry.

RUSTUM ROY

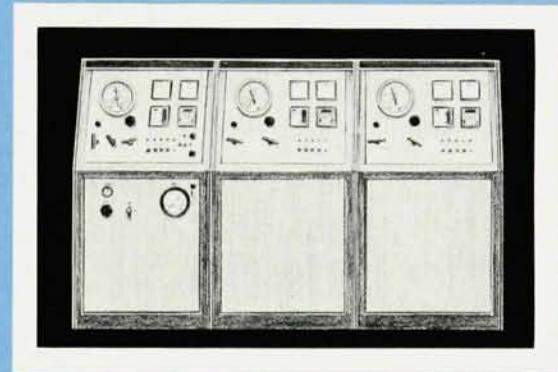
10/85 Pennsylvania State University
University Park, Pennsylvania

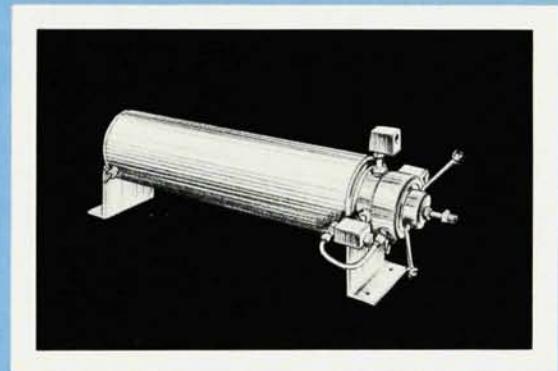
LEDERMAN REPLIES: Wow! It would seem as if my letter was not received with universal approbation. Let me apologize to the critics in that the introduction to my response was unnecessarily flippant and plead that Rustum Roy's letter seemed to me outrageously polemical (as Paul Chayka points out) and I rejoiced at the contest of polemics in the great tradition of, alas, a bygone day. It was failed humor, not disrespect.

Jim Stoffel's arrows hurt but the article that provoked the letter exchange did present the case (well in advance of appropriation!) for SSC as best we could—as an essential step toward an understanding of all forces and particles. It described the project, its intellectual importance, its technological spinoffs and its potential contributions as a component of our basic-research activity to the nation's cultural and economic well-being. Finally, we expressed our conviction, perhaps a hope, that this would not have a negative impact on other sciences, but that all sciences, good science, would go forward together. The reason is very ably set forth by James Scott—the underlying unity of the subdisciplines should prohibit the advance of one good science at the expense of another good

Circle number 46 on Reader Service Card

HIGH PRESSURE SYSTEMS


Tem-Pres custom designs for elevated pressure investigation.


- Properties of Coal
- Solid State Electronics
- Properties of Petroleum
- Oxidation of Silicon Semiconductors
- Corrosion in Nuclear Applications
- Kinetics of Geothermal Systems
- Special Corrosive Applications

Coal Research—measures volumetric changes as a function of temperature at elevated pressure.

Custom system to evaluate corrosion of materials for reactor applications.

Internally heated pressure vessel to study high pressure dry oxidation of silicon for semiconductors.

Tem-Pres designs, tests and fabricates high pressure systems using gaseous, liquid, or solid pressures simultaneously with elevated temperatures. These systems include pressure vessels, pressure intensifiers, furnaces, pumps and associated instrumentation tailored to customer requirements.

To discuss your special requirements, contact:

Bob Shoff

science. My reference to "virtual money," which also excited William Moellering and Joseph Lomax, was an attempt to respond to many of Roy's concerns: Why fund SSC rather than, for example, increase aid to dependent children, cure science illiteracy or make the US a leader in biotechnology?

High-energy physicists wrestled mightily before proposing this giant

step. To compare SSC's cost to the cost of more socially relevant alternatives is a prescription for societal as well as scientific stagnation. It is as fruitless as comparing SSC's cost to that of the Sergeant York gun or to the cost of gum chewed in Manhattan. Our society does many things and is far from perfect. We believe we qualify for attention on the basis of the importance of the proposal to science, on the basis of the importance of this science

to our culture and on the basis of our skill and track record. As we noted in both article and letter, basic, curiosity-driven research has a good record of returns to society in material as well as cultural blessings.¹

David Johnson apparently read the letter but not the article. Norman Barth writes from a higher plane of idealism and I would like to know him better. After seven years of trying to organize a World Laboratory as a founding member of the International Committee on Future Accelerators, I found the task too difficult. But "Pride" is an essential fact of scientific life, often a driving force, influencing geniuses, institutions and nations. It by no means excludes collaboration, as we tried to say in our article.

Moellering is concerned about the deficit. He is not alone. In recent months it has become clear that SSC may become a minor casualty of the Gramm-Rudman era—with all of science reverting to the slide experienced in the 1970s. Here we are all at risk but the long-term effect of a setback to basic research would be disastrous to the nation (and the planet, Dr. Barth). I do not accept the notion that science is feeding at the public trough—our problem is to remind the people and their Congress that the long-term well-being of society is intimately dependent upon adequate Federal support of science. I believe that we can easily afford to double the total funding of basic research without significantly adding to the tasks of those who must solve the deficit problem. Basic research, of which SSC is one component, is not a luxury, not an entitlement of fat-cat scientists, but an essential component of a dynamic and modern society.

David Johnson isn't impressed that Niels Bohr and Enrico Fermi are on my side, so perhaps he and Roy would be interested in what three hard-nosed industrial research managers who are also eminent scientists have to say:

► George Pake (vice-president, Xerox Corporation):²

Nothing is more pragmatic than the broadest and deepest knowledge base mankind can attain.

► Hendrik Casimir (director, retired, Phillips Research Laboratory):³

There are many that hold that programs of scientists should be judged, approved or stopped on the basis of social relevance. The notion strikes me as singularly useless. First of all scientific beauty and philosophical depth are at least as important as practical applicability and that is rarely taken into account. Second, the time lag between scientific progress and practical application makes it impossible to determine

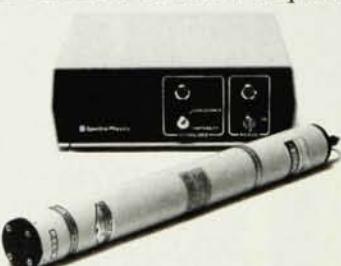
Two stabilized lasers for the price of one.

It's quite a bargain.

You get a versatile 1 mW HeNe laser with frequency stability.

Or simply turn a key and get a 1 mW HeNe laser with amplitude stability.

All in a single package.


The 117A from Spectra-Physics is a model of simplicity. Stability is attained minutes after turn-on. The laser requires practically no maintenance.

It operates near ambient temperature. And it has a proven hard seal with a typical lifetime of 20,000 hours.

If you're involved in metrology, interferometry, optical testing, holography or related technologies, you'll find the Model 117A a real workhorse.

And, of course, you can't beat the new low price.

For further information contact your local Spectra-Physics sales engineer. Or write for our detailed brochure, Spectra-Physics Laser Products Division, 1250 Middlefield Road, Mountain View, CA 94039-7013. Phone (800) 227-8054.

Spectra-Physics

Circle number 48 on Reader Service Card

Introducing MegaPlus

2MW

the most POWERFUL nitrogen laser available

With over 175 systems in the field, PRA knows pulsed lasers. And we listen to you...

"More power for multiphoton excitation, photolysis and fluorescence" ... PRA responds with two full Megawatts of power. It's there when you need it.

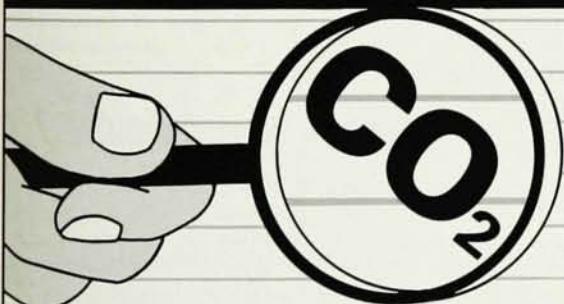
For more information please contact:

PRA International

100 Tulsa Rd.
Oak Ridge, TN 37830

Tel. (615) 483-3433

PRA International

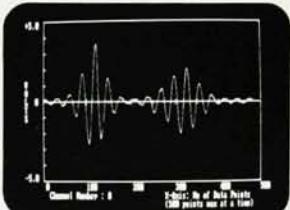

45 Meg Drive, London, Ontario
Canada N6E 2V2
Tel. (519) 686-2950
Telex: 064-7597

In North America Call Toll Free: 1-800-265-1226

PRA

Circle number 49 on Reader Service Card

THE GAUGE THAT GIVES YOU A CLUE.


BALZERS QMG 064 PARTIAL PRESSURE ANALYZER gives you a complete analysis of your vacuum system, enabling you to crack the toughest vacuum problems... quickly, easily and affordably. It provides total pressure, plus the partial pressures of eight user-selected gases.

Leave the detective work to the Balzers QMG 064. To find out more, call or write.

BALZERS

Balzers
8 Sagamore Park Road
Hudson, NH 03051
Tel (603) 889-6888
TWX 710-228-7431

Balzers Aktiengesellschaft
FL-9496 Balzers
Fürstentum Liechtenstein
Tel (075) 4 4111

MODULAR DATA ACQUISITION SYSTEM

We Bring Engineers, Scientists And The IBM-PC Together. Our unique high-performance modular data acquisition system allows you to purchase the configuration that exactly meets your requirements.

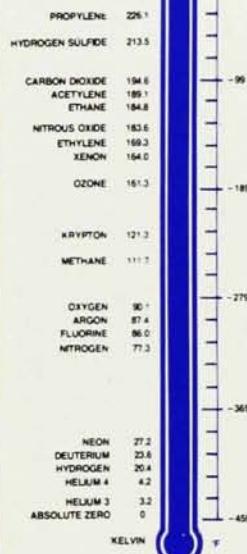
8-BIT A/D
SYSTEM

\$490

12-BIT A/D
SYSTEM

\$690

QUA TECH, INC.


478 E. Exchange St. Akron OH 44304
(216) 434-3154 TLX: 5101012726

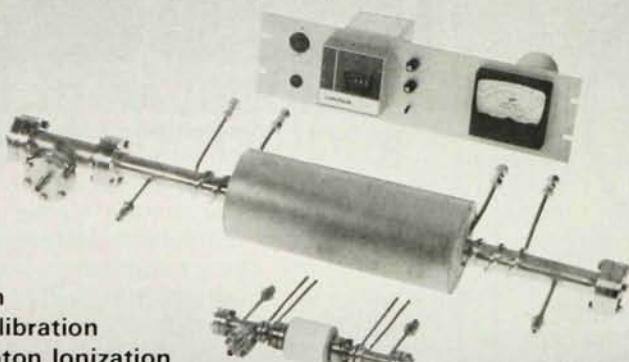
Circle number 51 on Reader Service Card

From Sensors
to Complete Systems

CRYOGENICS

Circle number 52 on Reader Service Card

Since 1967, Scientific Instruments, Inc. has provided the measurable difference in cryogenic sensing and instrumentation.


Thermometers: Germanium, Platinum, Gallium Arsenide Diode, Silicon Diode & Chromel vs Gold Thermocouple • Digital Readouts • Microprocessor Based Temperature Controllers • Liquid Level Indicators/Gauging Systems • Liquid Level Controllers • Constant Current Generators • Industrial Temperature Transducers

For Complete Specifications Contact:

Scientific Instruments, Inc.

1101 25th Street, West Palm Beach, Florida 33407
(305) 659-5885 Telex: 51 3474

ionization cells and heat-pipes

- Research
- Laser Calibration
- Multiphoton Ionization
- Infrared and UV Generation

We offer a range of stainless steel and custom-specified heat-pipes and ionization cells equipped with current collectors and your choice of windows. Shown are HP-801 and HP-802 heat-pipes with HPC-800G power supply with pressure gauge and digital temperature indicator. Call us to discuss your laser research needs.

comstock

P.O. BOX 199 OAK RIDGE, TENNESSEE 37831 (615)483-7690

letters

practical social relevance at the time fundamental results are being obtained, and even more impossible to do it before.

► Lewis Branscomb (vice-president, IBM):⁴

Microelectronics for computers and the technologies for recombinant DNA were not contained, even implicitly, in the engineering handbooks of their day, nor were they tripped over "by accident" in some laboratory. Indeed, it is hard to think of any technology important to our economic competitiveness or our standard of living that has not been bolstered, directly or indirectly, by exploratory research into fundamental aspects of matter and energy.

Finally, a rereading of Roy's letter convinces me that his is an extremist view. In spite of the mail, this can't be the consensus of PHYSICS TODAY's readers. To use the punch line of my favorite story, "Is there anyone else out there?"

References

1. See, for example: L. M. Lederman, *Sci. Am.* **251**, 40 (1984); J. A. Tay, C. H. Luebly-Smith, *Fiscal Studies* **3**, 15 (1985); M. Bianchi-Streit *et al.*, *Economic Utility Resulting From CERN Contracts*, CERN **84-14** (1984).
2. G. Pake, *Mater. Res. Bull.*, May/June 1985.
3. H. Casimir, *Haphazard Reality*, Harper and Row, New York (1983), p. 312.
4. L. Branscomb, dedication address for the Tevatron, October 1985.

LEON M. LEDERMAN

2/86

Batavia, Illinois

Strategic Defense Initiative

Wolfgang K. H. Panofsky's plea against the Strategic Defense Initiative (June, page 34) overlooks an important fact: the complete inability of technological experts to foresee the state of technology 20 or even 10 years ahead. This was true for the airplane, the machine gun, the tank, radio, radar, the jet engine, television, the atom bomb, the hydrogen bomb, the ICBM, space vehicles, satellites, lasers and electronic computers. In view of this, as a scientist one would say, "Because we are so ignorant, by all means let's go and find out."

The alternative, "We now have secure mutual assured annihilation capacity; for heaven's sake, let's not rock the boat," seems rather unappetizing, in particular because it is permanent. Because we are so much more sensitive about these things than the Russians, does anyone think that they will ever

Circle number 53 on Reader Service Card