## letters

▶ a claim that Harter and Chris Patterson "devised the rotational energy (RE) surface."

In this four-page news story largely devoted to Harter and Patterson, there is a one-sentence mention of our work.

In a comment on a letter by Philip R. Bunker, Harter (January 1985, page 13) says, "References to the paper by Dorney and Watson are included in all our publications on the subject of clustering," but apparently this does not inhibit him from making false statements about what "anyone had ever dreamed" or what "had been anticipated" by the mid-1970s. Harter also claims that the one-sentence mention of our work "overstates" our contribution. Inasmuch as the topics listed above are treated in our paper and not acknowledged in the PHYSICS TODAY story, I disagree. I will not here discuss the other matters raised by Bunker's letter and the comments of Harter and Eric J. Heller, but I wonder why PHYSICS TODAY continues to publish Harter's claims. The opportunity should have been taken in January to correct some of the errors of the July 1984 article, rather than to allow Harter to claim that a one-sentence mention in a four-page story "overstates" the contribution of other workers.

### Reference

 J. K. G. Watson, A. J. Dorney, J. Mol. Spectrosc. 42, 135 (1972).
 J. K. G. WATSON

J. K. G. WATSON
Herzberg Institute of Astrophysics
2/85
Ottawa, Canada

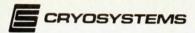
WILLIAM G. HARTER REPLIES: Bertram Schwarzschild's story implies that the semiclassical theory of angular-momentum tunneling mechanisms and resulting superfine energy-level structure was put forward<sup>1</sup> by Anthony J. Dorney and J. K. G. Watson's work. Because those details were not discussed by those authors the story does, therefore, overstate their contribution to that subject. However, in my reply to Philip R. Bunker (January 1985, page 13) I did not mean to downgrade Dorney and Watson's contribution to the problem of understanding fine (as opposed to superfine) structure through arguments based on classical mechanics. I apologize for this misunderstanding.

The cluster problem put forward by the Los Alamos theoreticians in 1976 focused heavily on the superfine structure. They noticed that only certain arrangements of species  $A_1T_1E$ ,  $T_2T_1$ ,  $ET_2A_2$ ,  $A_2T_2T_1A_1$  or  $T_1ET_2$  were allowed in particular orders with integral superfine splitting ratios of 2:1, 1:1 and so on. These and similar puzzles

were emphasized<sup>2</sup> in an article by K. Fox, H. W. Galbraith, B. J. Krohn and J. D. Louck, and are not discussed in any previous paper known to me. The explanation of superfine structure was made later using a semiclassical action and tunneling integral method.

Nevertheless, the authors of the Los Alamos article were unaware of discussions of fine structure by Dorney and Watson and by K. R. Lea, M. J. M. Leask and W. P. Wolf. Later a referee noticed the connection in one of our first papers and we then informed Los Alamos. In my opinion this is understandable because Dorney and Watson's paper, "Forbidden rotational spectra of polyatomic molecules-Stark effects and  $\Delta J = 0$  transitions of  $T_d$ molecules," is not devoted to the clustering effect; indeed, there are only a few paragraphs about it. The paper by Lea and his coworkers is from another field entirely. The history is further complicated by the fact that one of the Los Alamos authors was involved in a proprietary dispute with Watson over forbidden-transition theory. (See the first footnote in Dorney and Watson's paper.) So while he may have known about their paper, the relatively obscure facts about fine structure could easily have been overlooked.

It was in this context, then, that the Los Alamos group noticed "fewer lines than had been anticipated." The experimental discovery of the prevalence of clustering and superfine structure certainly belongs to the Los Alamos group, and they were the ones who emphasized their importance. The observation of superfine, hyperfine and superhyperfine structure by the Bordé group is the next story, and it has already shown the importance of understanding the details within the clusters. It is one thing to notice an effect, but it may be quite another to notice the importance of it.


### References

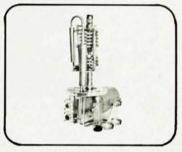
- A. J. Dorney, J. K. G. Watson, J. Mol. Spectrosc. 42, 135 (1972).
- K. Fox, H. W. Galbraith, B. J. Krohn, J. D. Louck, Phys. Rev. A 15, 1363 (1977). WILLIAM G. HARTER

Georgia Institute of Technology 9/85 Athens, Georgia

## Value of physics

In reading the letter about the value of a physics education by Mark Mandelkern (June, page 13), I would remark that education in physics has helped me in my mathematics teaching. I teach both mathematics and physics on the high-school level. My education in physics helps me sort through many of the wasteful and unnecessary topics given to elementary and high-school




# Your CRYOGENIC CONNECTION

announces

AT LAST

A 4.5 K Closed Cycle Refrigerator System Under \$25,000.00

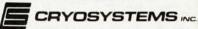
- Laboratory Size and Industrial Quality
- 1/4 Watt at 4.5 K



Model LTS-21-H, Temp.

### For:

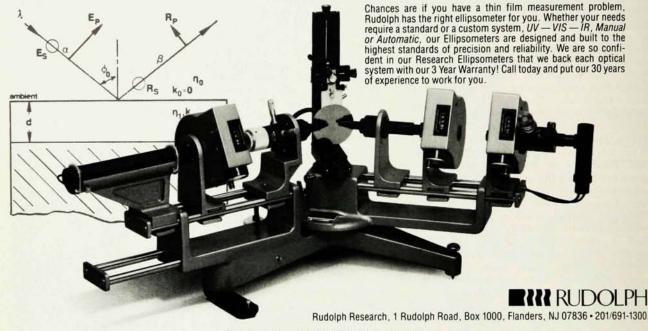
- Helium Reliquefiers
- Detector Cooler
- · Low (or no) Boiloff Dewars


### **OPTIONAL FEATURES:**

- Variable Temperature Control
- Optical Access
- Vibration Free Mounting

Cryosystems offers a full line of 4.5 K Closed Cycle Refrigerator Systems from 1/4 to 4 Watts with variable temperatures from 2.5 K to 300 K.

Also Available—FTIR, VSM, Mossbauer and Special IR Systems. We Custom Engineer to Your Needs.


> To learn more about your CRYOGENIC CONNECTION write or call:



802 West Grand Rd., Suite 122, Tucson, AZ 85749 800-882-2796 TELEX: 24-1334

APS SHOW-BOOTH #163
Circle number 94 on Reader Service Card

# FROM IÅ TO 60,000Å FILM MEASUREMENT SOLUTIONS BEGIN WITH RUDOLPH



Circle number 95 on Reader Service Card

# Problem-Solving Handbook for Physicists, Engineers and Students..

# PHYSICS VADE MECUM

Herbert L. Anderson, Editor-in-Chief

va-de me-cum (va'dē mē'kəm, va'dē mā'-) n., pl. vade mecums. 1. A useful thing that a person constantly carries with him. 2. A book, such as a guidebook, for ready reference. [Lat., go with me.]\*

Found in the offices, laboratories, libraries, classrooms, and briefcases of scientists and engineers, this quick-reference lool saves time and effort in solving a wide range of scientific and technical problems.

Organized to make data available with minimal searching, PHYSICS VADE MECUM is a compact, comprehensive storehouse of formulas, numerical data, definitions and references that are grouped by discipline. A General Section contains fundamental constants, the SI units and prefixes, conversion factors, magnitudes, basic mathematical and physics formulas, formulas useful in practical applications, and a list of physics data centers.

\*Source: The American Heritage Dictionary, 2nd ed. (Boston: Houghton Mifflin Company, 1982), p. 1134.

### Contents

General Section, H.L. Anderson; Acoustics, R. Bruce Lindsay; Astronomy and Astrophysics, Laurence W. Fredrick; Atomic Collision Properties, Clarence F. Barnett; Atomic Spectroscopy, Wolfgang L. Wiese and Georgia A. Martin: Biological Physics, Hans Frauenfelder and Michael C. Marden; Cryogenics, Russell J. Donnelly; Crystallography, George A. Jeffrey; Elementary Particles, Robert L. Kelly; Energy Demand, Arthur H. Rosenfeld and Alan K. Meier; Energy Supply, Hans A. Bethe; Fluid Dynamics, Russell J. Donnelly; High Polymer Physics, Ronald K. Eby; Medical Physics, Thomas N. Padikal; Molecular Spectroscopy and Structure, Marlin D. Harmony; Nuclear Physics, Jagdish K. Tuli and Sol Pearlstein; Optics, John N. Howard; Plasma Physics, David L. Book; Rheology, Hershel Markovitz; Solid State Physics, Hans P.R. Frederikse; Surface Physics, Homer D. Hagstrum; Thermophysics, Yeram S. Touloukian.

1981 • 340 pp • ISBN 0-88318-289-0 • LC: 81-69849 • Softcover: \$25.00. (\$20.00 each for orders of 5 or more copies to one address).

Send orders to: American Institute of Physics
Marketing Services
335 East 45th Street
New York, NY 10017

To place credit card orders, call 1-800-AIP-PHYS; in New York State, call 212-661-9404.

## letters

students in mathematics texts. Algorithms that will never be used, topics in number theory that waste the student's time and number lines that serve no useful purpose are some of the things my physics education has taught me to eliminate from the year's course. Students have only so much math time, and so it is valuable to implement a pragmatic approach to mathematics topics-if it is useful in physics or in life, it is worth presenting. Many of my fellow mathematics teachers have no physics or science background and simply present topics as they occur in the mathematics texts without any real understanding of their usefulness. Also, my physics education allows me to present topics in terms of the mathematical interpretation of nature-orbits of planets as circles, the prediction of the future using formulas, and algebra used in all manner of physical events-to show what use mathematics has to students of all levels, excellent to poor. It is my opinion that there is a great need for people who have physics backgrounds in mathematics teaching at all levels.

Stewart E. Brekke Robeson High School Chicago, Illinois

**Aiding Latin America** 

6/85

In mid 1984 the US National Science Foundation awarded a \$300 000 grant to aid Latin American physics to The American Physical Society; principal investigators are Leo Falicov (University of California at Berkeley) and Leon Lederman (Fermilab). The grant was in response to an appeal formulated during the Second Symposium on Pan American Collaboration in Experimental Physics, held in Rio de Janeiro in July and August 1983. This appeal was stimulated by financial crises resulting in severe restrictions on hard currency in many Latin American countries, which adversely affected their physicists. APS set up a grant-oversight committee with close connections to its International Physics Group, and Fermilab was designated to administer the grant. The funds were to be used for physics in Argentina, Brazil, Chile, Mexico and Venezuela in four areas: library subscriptions to US scientific journals; payment of page charges for articles by Latin American authors in refereed US journals; spare parts and maintenance items for existing equipment in Latin American physics laboratories; and per diem support for short visits by Latin American physicists to the United States.

Representatives in each of the five countries were selected to ascertain the



Mechanically centered optical column.

■ Independent x and y beam rastering adjustment for crater size definition.

 UHV compatible and bakeable.
 4½" stainless steel, knife edge flange mounting.

Nominal gun working distance—
 7" mounting flange to target.

For more information contact your Perkin-Elmer representative:

Perkin-Elmer, Physical Electronics Div. 6509 Flying Cloud Drive, Eden Prairie, MN U.S. A. 55344! Telephone (612) 828-6300 Other offices: Munich, Germany; Chigasaki, Japan; Hong Kong

Physical Electronics

### PERKIN-ELMER

See us in the Perkin-Elmer Booths #121, 122-APS SHOW.

Circle number 96 on Reader Service Card



ITT/Electro-Optical Products Division can now offer you the latest streak-tube advancements developed for Lawrence Livermore and Los Alamos National Laboratories. The ITT Model F4157 series features a variety of windows, wide dynamic range, and high-sensitivity photocathodes. Extinction ratio has been greatly improved in gated operation. Minimal system modifications are needed to retrofit these devices into existing installations.

High photocathode uniformity and a wide variety of spectral responses, including

High photocathode uniformity and a wide variety of spectral responses, including high-red-sensitivity, can be offered through ITT's remote process technique. And, a wide choice of window materials can be accommodated by ITT's advanced indium seal techniques.

ITT's new streak-tubes are low-voltage-gateable and feature all-electrostatic design with improved spatial resolution, low distortion and wide dynamic range. Streak-tubes are encapsulated in high-voltage-insulated and magnetically shielded

A standard line of photoelectronic products is also available. Ask for our catalog by contacting: ITT Electro-Optical Products Division, P.O. Box 3700, Fort Wayne, IN 46801, (219) 423-4341, TWX: 810-332-1413, Telex: 232-429.

ELECTRO-OPTICAL PRODUCTS DIVISION