
Fractals: Where's the physics?
Leo P. Kadanoff

Why all the fuss about fractals? Phys-
ical Review Letters complains that
every third submission seems to con-
cern fractals in some way or another.
Corporate research labs such as Ex-
xon's and IBM's expend perceptible
fractions of their entire basic-research
budgets on the study of fractal systems.
Perhaps a half-dozen conferences dur-
ing the past year were devoted to the
subject. Why?

But first what. What are fractals?
Different people use the word fractal in
different ways, but all agree that fractal
objects contain structures nested with-
in one another like Chinese boxes or
Russian dolls as, for example, in figure
1. This Sierpinski gasket consists of
triangles within triangles and so on to
the finest level. The littlest triangles,
in color, are hard to draw but easy to
describe: They are little copies of the
entire object. Some fractal objects are
more random in structure. The cover
shows a "tree" produced by a computer
algorithm called DLA, for diffusion-
limited aggregation. The basic DLA
algorithm was introduced by Thomas
A. Witten and Leonard M. Sander in
Physical Review Letters 47, 1400 (1981).
In DLA, the tree grows unit by unit by
the following process: A particle is
inserted above the tree with a random-
ly chosen jr-coordinate. The particle
then undergoes a random walk in
which each step is to a neighboring
lattice site; the choice of neighbor is
determined by a "throw of dice." The
walk continues until the particle
reaches a site neighboring the tree. It
then stops walking, the tree grows one
unit by the addition of that particle and
the entire process continues with the
insertion of a new particle. Figure 2
shows another example, this time ex-
perimental. The basic units are little
gold balls, and the process is essentially
the same, except the real-world object
is three-dimensional while the comput-
er object on the cover is two-dimension-
al. One final example: Figure 3 shows
a top view of a block of Lucite 2 cm
thick; monoenergetic MeV electrons

A fractal object. For
many other examples of
such objects see Benoit

Mandelbrot's book
The Fractal Geometry

of Nature (Freeman,
New York, 1983).

Figure 1

have been shot into it and stopped
within a thin layer perhaps 1 cm below
the surface. After the injection is
completed, a nail is inserted at the side
and the electrons shoot out, leaving a
trail shaped like a river system behind
them.

One reason for our interest in fractal
objects is their practical importance.
Materials scientists want to produce
entirely new structures with entirely
new properties, like the sponge of
figure 2. When this kind of object is
grown to be very large it has huge
empty spaces and a density that de-
creases roughly as p = pn(R/a) l'~,
where R/a is the ratio of the radius of
the object to that of the balls. Dielec-
tric breakdown, shown in figure 3, is of
considerable technical importance. As
a final example, consider petroleum-
bearing rock layers. These typically
contain fluid-filled pores of many sizes,
which might be effectively understood
as a fractal object.

The technical interest of fractals is
matched by their intellectual interest.
Two of the fundamental symmetries of
nature are dilation (r —» ar) and trans-
lation (r —> r + b). We can represent
them verbally by talking about a
change in our unit of length or in the
origin of our coordinate system. Frac-
tal objects are highly nontrivial repre-
sentations of these symmetries. Thus,
for example, an expanded piece of the
Sierpinski gasket of figure 1 can be
moved in such a way as to make it
coincide with the entire gasket—and
this operation can be performed in an
infinite number of ways. The more
random fractals of figures 2 and 3
probably obey similar combined trans-
lation-dilation symmetries.

Another example of dilation-sym-
metric behavior that has been studied
in great detail involves the critical
phenomena that arise near "second-
order" phase transitions. The phenom-
enology of these transitions has been

PHYSICS TODAY / FEBRUARY 1986 0031-9228 / 86 / b200 06- 05 / $51.00 "ItfBB institute of Physics



With this issue of PHYSICS TODAY we introduce Reference Frame, a column
of opinion to be written by a number of regular contributors, each an eminent
physicist. This month's columnist, Leo Kadanoff, is a condensed-matter theorist
who is particularly known for his contributions to the theory of phase transitions,
critical phenomena, and chaotic behavior in nonlinear systems. He is John D.
MacArthur Professor of Physics at the University of Chicago.
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elaborated in considerable detail with
the aid of the concept of universality,
that is, the notion that disparate phase
transitions may exhibit quantitatively
identical behavior. This concept might
be extended to processes that produce
fractals. For example, might the fine
details of dielectric-breakdown pat-
terns formed in different contexts be
identical? Moreover, might real break-
downs in two dimensions (see figure 3)
be identical with theoretical models of
step-by-step growth, perhaps even with
the model simulated on the cover?

One way of answering such questions
is to perform appropriate measure-
ments on the objects in question. One
quantity commonly measured is the
fractal dimension. (This dimension is a

variant of a concept due to the mathe-
matician Felix Hausdorff.) The fractal
dimension is defined as d \nM{R)/
d laff, where M(R) is the mass con-
tained within a distance R from a
typical point in the object. If two
objects are the same they must at least
have the same fractal dimension.

Unfortunately, although this single,
rather primitive measurement enables
us to distinguish among objects, it
never enables us to give a convincing
case for their essential identity. Some
progress has been made in identifying
other qualities, beyond the fractal di-
mension, that might be universal.
However, further progress in this field
depends upon establishing a more sub-
stantial theoretical base in which geo-
metrical form is deduced from the
mechanisms that produce it. Lacking
such a base, one cannot define very
sharply what types of questions might
have interesting answers. One might
hope, and even expect, that eventually

A "beam tree" produced by dielectric
breakdown. Object courtesy of
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a theoretical underpinning—like that
of Kenneth Wilson's renormalization
approach—will be developed to anchor
this subject.

Without that underpinning much of
the work on fractals seems somewhat
superficial and even slightly pointless.
It is easy, too easy, to perform computer
simulations upon all kinds of models
and to compare the results with each
other and with real-world outcomes.
But without organizing principles, the
field tends to decay into a zoology of
interesting specimens and facile classi-
fications. Despite the beauty and ele-
gance of the phenomenological obser-
vations upon which the field is based,
the physics of fractals is, in many ways,
a subject waiting to be born. •
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