quantum electrodynamics, permanently useful monographs were written long ago. The time when this can be done for quantum chromodynamics is still far in the future, at least as far as the aspects concerning quark-gluon plasmas are concerned.

KEIJO KAJANTIE University of Helsinki

The Structure of Matter: From the Blue Sky to Liquid Crystals

André Guinier 230 pp. Edward Arnold, London, 1984. \$19.95

Science provides us with predictive mathematical theories, but, equally important, it gives us pictures of the underlying structure of the things around us. It tells us that the physical world is made of atoms, which, for many purposes, may be regarded as small charged spheres with valence electrons. Much of the success of modern science is due to the implications of this simple and powerful idea. In The Structure of Matter, André Guinier shows us how fruitful the atomic model has been. While restricting himself to the realm of ordinary matter-there are no plasmas or neutron-star interiors to be found here-he summarizes most of the experimental work that has been done on determining atomic structures over the last 60 years, as well as the major known links between microstructure and the macroscopic properties of materials.

Guinier makes the story of matter deceptively simple. We begin with atoms, ions and small molecules, each with a characteristic size and bonding pattern. The existence of critical points argues strongly that most matter may be divided into two types: disordered liquids and gases, and ordered solids, separated by an inevitable phase transition. The bonds in ordered solids (crystals) determine much of their behavior, with, for example, strong covalent bonds leading to hard, nonconducting materials that are difficult to melt. This and much of the rest of the story will be familiar to working physicists, but it is rarely so lucidly presented. Many of the richest rewards are in the later chapters that consider states of matter "intermediate" between order and disorder, where we learn how detergents clean, how liquid crystals tell us the time and why rubber has an elastic limit three orders of magnitude larger than that of a

The book's diction, organization and wide margins copiously filled with electron micrographs, ordinary graphs and diagrams are those of an introductory text, but the overall feeling of the book

is that of a distillation of Guinier's long experience of his subject. The acute awareness of limitations, delight in detail and easy use of a formalism that has become second nature are the marks of a specialist presenting his own field.

Unfortunately, these characteristics make the book difficult to classify. Lattice-energy sums and probability distributions, while not dealt with heavily, appear whenever they are the natural means of expression of an idea, making the book too difficult for, say, a "physics for poets" course. Many who can follow the more advanced ideas may find too much review material for the book to hold their interest. Perhaps the most natural setting for this book is a materials-science or geology course, where the ideas of the basic science of matter are becoming more and more essential to applications. We may also hope that Guinier will reach one of his main intended audiences, namely pre-college teachers, thereby strengthening our ailing scienceteacher training programs.

D. AARON ROBERTS NASA Goddard Space Flight Center

Rates of Phase Transformations

R. H. Doremus

176 pp. Academic, New York, 1985. \$29.00

In the last few years there has been an explosive increase in research related to the dynamics of transformations from one phase of matter to another. Major topics of interest include growth instabilities, diffusion-limited aggregation, fractals and quasicrystals. None of these topics, unfortunately, are covered in R. H. Doremus's Rates of Phase Transformations. Doremus does cover a wide range of material, including nucleation, whisker growth, precipitation in metals and crystallization of multicomponent melts, but the abovenamed omissions limit the book's usefulness as a text, and serve to date it.

The book derives from a graduate course in materials engineering taught at Rensselaer Polytechnic Institute. Though it is said to be "appropriate for courses and individual study by chemical engineers, chemists, and physicists," it is unlikely to be used as a physics text. The problem is not only that current material is missing; the significant drawback is simply that the book is more suited for use in engineering than in physics. For example, empirical fitting functions are often simply presented and then used in cookbook fashion. And though references to original works are given, clearly the emphasis here is not on concepts and underlying physical principles but rather on what seems to work

GOOD

The 2022.

Provides optimum signal conditioning for most detectors at an affordable price.

Circle number 55 on Reader Service Card

- 6 Time Constants
- Automatic D.C. Restorer
- 4 μν Noise

CANBERRA

Canberra Industries, Inc. One State Street Meriden, CT 06450 (203) 238-2351 TX: 643251