processes in complex molecular gases. Legvold's students figured prominently in the 110 scientific papers that he published during his career. He was active in research just prior to his death.

> CLAYTON A. SWENSON DOUGLAS K. FINNEMORE KARL A. GSCHNEIDNER JR Iowa State University

John F. Noxon

John F. Noxon, leader of the Optical Aeronomy Program of the Aeronomy Laboratory of NOAA in Boulder, died on 19 January 1985.

Noxon was born in Pittsfield, Massachusetts, on 7 July 1928, and received his PhD in physics from Harvard University. He joined the Aeronomy Laboratory as a senior scientist in 1972, coming from Harvard's Blue Hill Observatory, where he was associate director.

Noxon pioneered studies of airglow and its relationship to atmospheric waves, spectroscopic measurements of atmospheric ozone on the Earth, Mars and Venus, spectroscopic studies of stratospheric trace gases (including the first observation of NO₃), and measurements of the global distribution of stratospheric NO2. Noxon was an adventurer and explorer throughout his scientific career, obtaining observations from aircraft flights over the North Pole, ship cruises in the Southern Hemisphere, and from sites that included Alaska, Peru, Hawaii and Greenland. His sense of discovery was not restricted to science. He had a lifelong interest in mountaineering and made two climbing trips in the Nepal Himalayas and an ascent of Mt. McKinley in his student days.

ELDON E. FERGUSON Aeronomy Laboratory-NOAA Boulder, Colorado

Omer Kaymakcalan

Omer Kaymakcalan of Syracuse University died on 22 February 1985 at the age of 30. A native of Ankara, Turkey, Kaymakcalan earned his PhD from the University of California at Berkeley, working for Stanley Mandelstam, and went to Syracuse University in November of 1981 as a research associate in high-energy particle theory. He worked on several problems of current interest: proton decay, the implications of the axial anomaly for vector mesons and an effective Lagrangian for supersymmetric quantum chromodynamics. More recently he worked on finding the absolute minima of SO(10)-invariant Higgs potentials.

MICROPROCESSOR BASED CRYOPUMP REGENERATION CONTROLLER

Now you can have microprocessor technology control for increased cyropump reliability and operating efficiency. Continuous display of temperature or pressure allows a positive determination of entire system status. **Remote, manual** and **automatic** modes of operation provide added flexibility in the regeneration process.

For complete specifications, write or call:

Scientific Instruments, Inc.

1101 25th Street, West Palm Beach, FL 33407 (305) 659-5885 • TELEX: 51 3474

Circle number 47 on Reader Service Card

QUADRUPOLE GAS ANALYZER

Now Available with Particle Multiplier

STANDARD FEATURES

- 1-100 AMU Faraday Cup Detector
- tector Dual Filaments
- 100% Front Panel Control
- 12" High Resolution Display
 10-4 to 5 × 10-12 Torr Pressure Range
 Bacl
 - Display RS232 Computer Interface • Background Subtraction

OPTIONAL FEATURES

Pressure vs. Time Display

• 1-200 AMU

Graphics Printer For Hard Copy

· Sample System For Higher Pressures

With Dycor's Quadrupole Gas Analyzer you will no longer have to guess about what's in your Vacuum System. A glance at the screen will tell you exactly what is there. Our engineers would be happy to discuss your application.

1023 Wm. Flynn Hwy • Glenshaw, PA 15116 • (412) 486-4700

Circle number 48 on Reader Service Card