
GAMMA SPECTROSCOPY NOBODY DOES IT BETTER

You can buy the odd component of a Germanium Detector System just about anywhere. Putting together these components to achieve excellent results in gamma spectroscopy is another matter. Canberra Detectors, MCAs, NIMs, and yes — Lead Shields are designed and built for optimum performance in systems — after all, isn't that the way you use them? As the world's leading supplier of gamma analysis systems, we demand the best in system components — shouldn't you?



Circle number 28 on Reader Service Card

CANBERRA

Canberra Industries, Inc. One State Street Meriden, Connecticut 06450 (203) 238-2351 for his kindness and generosity, which showed in many ways: in his egalitarian attitude to women in his laboratories, well in advance of his time; in the efforts he exerted on behalf of Kapitsa when the Soviet government detained him during a summer visit in 1934; and in his assistance to scientists forced to leave Germany in the thirties.

Rutherford was a man for his season. The scientific climate has changed, and we cannot expect to see his like again.

"Talk Softly Please" is a photo taken by C. E. Wynn-Williams in 1935. Ernest Rutherford, known for his booming voice, is shown talking to J. A. Ratcliffe. The door visible on the left led to the laboratory where James Chadwick discovered the neutron. In the foreground is a linear amplifier, with the large batteries for its power supply. During counting the sign was switched on because the ionization chamber was microphonically sensitive. A version of this photograph is published in *Cambridge Physics in the Thirties* (Adam Hilger, Boston, 1984), edited by John Hendry. The volume contains the recollections from 19 distinguished scientists who worked in the Cavendish Laboratory in the twenties and thirties.

The book is divided into four parts. Part One, "Three famous experiments of 1932," contains recollections on the discovery of the neutron; the discovery of fast alpha particles obtained by proton bombardment; and of the use of the Wilson chamber to show the existence of positrons, discovered by Carl Anderson in Pasadena the same year. Part Two, "Cambridge physics and the Cavendish," contains recollections giving a more general look at how it was to work as a physicist in Cambridge at that time. Part Three, "Underlying themes," tells us how theory and experiment fared at the Cavendish, especially how some theorists succeeded at imposing themselves into an environment of experimentalists used to designing and building their own instruments from scratch. Part Four, "Change and continuity," relates the changes that took place at the Cavendish and in nuclear physics in the West when a large number of outstanding physicists fled the political regimes of Germany and Italy. All in all, Cambridge Physics in the Thirties gives us a fresh view of research in a laboratory that under Rutherford became the leader in nuclear physics. (Photo courtesy AIP Niels Bohr Library.)