

The new HPG-2 is a compact and self-contained source of high voltage, high frequency power suitable for establishing and controlling gas plasmas. This easy to use generator permits either direct or electrodeless connections in the widest variety of plasma applications. These include plasma induced polymerization, afterglow detector for gas chromatography, atomic emission spectroscopy, plasma torch, dielectric sputtering and plasma etching.

For complete specifications and application information, please contact us at.

ENI Power Systems, Inc., 100 Highpower Rd., Rochester, New York 14623. Call (716) 427-8270, or Telex 6711542 ENI UW or.

ENI Power Systems, Ltd., Mundells Court, Welwyn Garden City, Hertfordshire AL7 1EN, England. Call (07073) 71558, or Telex 851 24849 ENI UK G.

ENIPOWER SYSTEMS, INC.

on the Manhattan Project; in 1943 he was appointed chief of the theoretical physics division of the newly established Los Alamos Lab by its first director, J. Robert Oppenheimer. After the war, he returned to Cornell and began theoretical studies of the quantum theory of electromagnetic interactions. In 1947 he was the first to apply the concept of mass renormalization, which had been proposed earlier by Hendrik A. Kramers, to the 2s and 2p Lamb shifts in hydrogen that had just been measured by Willis Lamb and R. C. Retherford. Interpreting the displacement as a result of the electron's interaction with the radiation field. Bethe calculated (nonrelativistically) the self-energy of an electron bound in an atom. Relativistic calculations of these energy shifts were later made by Julian Schwinger, Richard Feynman and others. In 1955, Bethe turned his attention to the nuclear many-body problem and to the saturation of nuclear forces. Since his retire-

ment in 1975, he has focused on problems in stellar evolution, in particular, on the nature of supernovae.

Bethe served on the President's Scientific Advisory Committee from 1956 to 1959. As a proponent of the peaceful uses of atomic power, he served as a technical adviser to the US delegation to the International Conference on Peaceful Uses of Atomic Energy in Geneva in 1955. He was much involved in the negotiations that finally led to the 1963 test ban treaty. His concern over the oil crisis has led to his appointment as chairman of Americans for Energy Independence, a nonprofit corporation that seeks to educate the public on all energy sources. Bethe has written Elementary Nuclear Theory (1947); Quantum Mechanics of One- and Two-Electron Atoms, with E. E. Salpeter (1957); Splitting of Terms in Crystals (1958); and Intermediate Quantum Mechanics (1964). His main work, however, is contained in over 200 papers in scientific journals.

obituaries

Robert Ta-pang Poe

Robert Ta-pang Poe died in Taipei, Republic of China, on 15 December 1984 while attending a project review meeting on the Synchrotron Radiation Source Facility being planned in Taiwan.

Poe was born on 25 April 1935 in Bejing, China. He came to the US in 1953 and earned his PhD in theoretical atomic physics at Berkeley in 1963. He started his postdoctoral career at the Lawrence Berkeley Laboratory, working in experimental high-energy physics in Wilson Powell's group. In 1964, he joined the physics department at the University of California in Riverside. He served as chairman of the department from 1976 to 1981, and at the time of his death was the director of the University's energy sciences program. Poe was a born teacher—his presentations were always lucid, well organized and lively. For years he taught the graduate-level classes in quantum mechanics and classical mechanics and gave the incoming graduates a solid grounding not only in theoretical physics, but also in basic research procedures. Poe took much interest in physics students at all levels; his enthusiasm in research, and his guidance and advice, influenced the careers of many young physicists.

Poe's research interests were extremely broad. He was one of the pioneers in the application of the dia-

POE

grammatic many-body perturbation method to the study of atomic systems. He made significant contributions to the knowledge of electron-atom scattering, the hyperfine structure, single and double photoionization, the fine structure of Rydberg atoms, and the multiphoton process. In addition, he conducted studies of vibrational and rotational excitations in electron-molecular scattering, helped develop the three-dimensional T-matrix approach for reactive scattering, and investigated, both experimentally and theoretically, electron scattering from laserselected excited atoms. In particle physics, Poe was involved with pioneering works on spin-parity analysis of

resonances. He correctly attributed the observed "H meson" to a kinematic effect. His works included the study of branching ratios of rare decays of K mesons and coherent production of the p meson. Poe and his Riverside group adapted the streamer chamber for nucleus-nucleus collision studies at the Berkeley heavy-ion accelerator, Bevalac. He pioneered a major experimental program in relativistic heavy-ion physics, one that focuses on two-pion correlations in heavy-ion collisions. The space-time structure of the pionemitting source was determined with the Hanbury Brown-Twiss technique. His most recent activity was the investigation of uranium-uranium collisions at Bevalac energies.

Poe was very interested in improving relations between the scientific community and other sectors of society. In 1980-81 he spent a sabbatical year in Washington, D.C., serving as senior science adviser to Congressman George Brown and the Congressional subcommittee on science and technology. Through his efforts, Poe successfully established a direct link between the scientific community and the policymaking Congressional committee, which contributed significantly to the quality of scientific decisions made by Congress. Poe continued to serve as an adviser for Congressman Brown after his return to Riverside.

Poe was extremely active in local community affairs. In appreciation of his contributions as a member of the Riverside Public Utilities Board, the city recently renamed its central utilities control center the Dr. Robert T. Poe Utilities Operations Center. Poe was one of the leaders in community efforts to launch an archaeological excavation in the local Chinatown.

In the last five years, Poe devoted much of his attention to promotion of science in the Republic of China. He was appointed research consultant for the National Science Council from 1976 to 1978. In 1979 he initiated and organized the first symposium on atomic and molecular science in Taiwan. He was instrumental in the establishment of the Institute of Atomic and Molecular Physics at Academia Sinica, and it was his determination and continuous effort that led to the proposed Synchrotron Radiation Facility in Taiwan. The Institute is now established and the accelerator project is well underway; at the time of his death, Poe was directing and coordinating the training of users for the new facility.

SUN-YIU FUNG
ANNE KERNAN
BENJAMIN SHEN
University of California,
Riverside
TU-NAN CHANG
University of Southern California

You can too, and discover a new level of measurement performance, flexibility, and accuracy.

NASA Lewis Research Center has four Dataq DM-100 precision analog interface boards installed in four computers. Now their Apples aren't just computers, they're high performance, high precision analog measurement systems.

NASA is using the Dataq DM-100 for sophisticated applications such as surface analysis of exotic new alloys. But the DM-100 can just as easily handle your down-to-earth instrumentation requirements in spectrophotometry, gas chromatography, calibration, testing, data logging, and many other laboratory automation and production applications.

That's because we designed and built the DM-100 with a complete package of powerful features. For example, you get:

- Measurement ranges of ±0.3, ±3, ±30, and ±300 volts full scale.
- Three programmable resolution modes of 12, 16, and over 19 bits allowing 1 μ v, 10^{-5} Hz, and 0.01Ω measurements —Eliminates the need for transducer signal conditioning.
- A unique integrating A-D converter that yields the highest noise immunity and lowest non-linearity of any other method —including dual slope.
- Floating inputs to 300v (1500v optional) for off-ground or differential measurements.
- Programmable sample intervals from zero seconds to 2.7 hours in 0.01 second increments for those measurements that require precise timing.
- Greatly simplified operation; a few BASIC commands will program the DM-100 to perform even the most complex routines.

- Programmable moving average filter that lets you adjust for noisy input signals.
- Four input channels for the simultaneous acquisition of trms ACV, DCV, frequency, and resistance. Program any channel for any function and measurement range you need.
- 1 kb internal data buffer to allow data acquisition independent of the host computer so you don't lose precious data when writing to disk.
- No pot adjustments required. Calibration is achieved through software and constants are supplied on floppy disk.
- Independent mx+ b scaling for conversion of frequency to volts, volts to pounds, resistance to temperature, etc.—during acquisition.
- An on board real time clock.

So Much Instrument for So Little Money

For all this capability, the DM-100 is priced at just \$550 (\$575 for the IBM PC™ version). That includes the DM-100 board, software, and complete documentation with programming aids and examples that let you plug in and run within minutes of opening the box.

All the features described above, plus several more, are included in the price except true rms. frequency, and resistance measurement functions (available for an additional \$175) and the extended 1500v common mode voltage option (available for \$50).

That's only one-third to one-half the price of competitive instruments that can't offer the power, flexibility, simplicity, and performance of the DM-100.

We Guarantee Performance

The best way to experience the full potential and exceptional performance of the DM-100 is to use it in your laboratory.

You can do so at no risk under our unique performance guarantee.

Send us your order and we'll send you the DM-100, software, and documentation. Plug it in and use it for 30 days then decide. If you don't agree that the DM-100 is superior to either a stand-alone tabletop converter costing two to three times as much, or any other plug-in converter you've ever used, simply put it back in the box and return it to us. We'll promptly refund your full purchase price, including the shipping charges.

The Dataq DM-100 precision analog interface is available for direct and immediate shipment. Call or write us today for complete product and ordering information.

Now available for the IBM PC™!

DATAQ INSTRUMENTS, INC.

100 Lincoln Street Akron, Ohio 44308 (216)434-4284