Nuciear mean-field theory

This theory provides insight into diverse nuclear phenomena
ranging from ground-state properties of nuclei and the matter in neutron stars to
the dynamics of heavy-ion collisions and spontaneous fission.

John W. Negele

One of the fundamental challenges
common to all areas of physics is to
understand the properties of systems
having large or infinite numbers of
degrees of freedom in terms of known
underlying interactions. Simply know-
ing the Schriodinger equation and Cou-
lomb’s law, for example, is not suffi-
cient to let us understand the chain
through which atoms form molecules,
which, in turn, beget macromolcules,
which eventually aggregate into a bio-
logical object with a life of its own. Nor
has knowledge of the Lagrangian for
quantum chromodynamics yet yielded
an understanding of hadrons. The
physics of systems with many degrees
of freedom often differs in crucial ways
from what we understand for simple
systems.

Among these complex many-body
problems, the ground-state structure
and low-energy dynamics of atomic
nuclei pose a unique challenge: to
understand the physics of small drops
of a dense, strongly interacting quan-
tum liquid. The underlying interac-
tions are sufficiently well known that
the essential questions are those of
many-body physics: the nature of the
ground state of bulk matter, the shape
and radial distribution of the nuclear
surface, the interplay between single-
particle and collective degrees of free-
dom, and the nature of the fundamen-
tal excitations.

These questions are similar to those
posed for aggregates of weakly interact-
ing particles—such as electrons orbit-
ing an atom or moving through a
crystal. In those cases it is often useful

John Negele is professor of physics at MIT; his
research is in theoretical physics—specifically
in many-body theory and nuclear structure.

24  PHYSICS TODAY / APRIL 1985

to assume that the dominant effect of
all the other particles on a single
particle is to provide a smooth field in
which the particle moves. At first
sight, it is astonishing that a theory
even remotely resembling this mean-
field approximation familiar to us from
atomic physics should have anything to
do with dense, strongly interacting
systems such as nuclei. In recent
years, however, nuclear mean-field the-
ory has begun to yield a quantitative
description of nuclear structure and
dynamics.

There is, furthermore, a wealth of
experimental information with which
to test our theoretical understanding of
nuclear structure and dynamics. In
contrast to other dense quantum li-
quids, such as liquid helium, which
thus far may only be studied in bulk,
finite nuclei are accessible to diverse
and precise probes. Nuclear charge,
current and magnetization densities
have been measured in detail with
electromagnetic probes; excited states
with virtually any desired quantum
numbers have been explored with ha-
dronic probes; and large-amplitude col-
lective motions have been studied in
processes ranging from spontaneous
and induced fission to collisions
between heavy nuclei.

These experimental and theoretical
developments’ are providing more and
more support for a static nuclear mean-
field theory and for its time-dependent
and finite-temperature generaliza-
tions. Figure 1 shows an example of
one of the phenomena—spontaneous
fission—that one can now calculate
using the mean-field theory.

Microscopic foundations
Although the nucleon-nucleon inter-

action ultimately arises from the quark
and gluon substructure of hadrons, one
can describe the low-energy dynamics
of nuclei—to within small correc-
tions—in terms of a phenomenological
two-body potential. A suggestive ana-
logy is the interaction between helium
atoms: The long-range attraction and
short-range repulsion between two he-
lium atoms, which can be derived from
multiple photon exchanges and the
interpenetration of electron clouds, are
well represented by a phenomenologi-
cal potential whose parameters are
fitted to scattering data and measured
virial coefficients. Similarly, for the
nucleon-nucleon interaction, all the
physics of meson exchange at large
distances and overlapping bags of
quarks at short distances is subsumed
into a phenomenological potential.
The strong short-range repulsion and
intermediate-range attraction, the spin
and isospin dependence, and the pro-
nounced angular-momentum depen-
dence of this potential are all made to
fit physical information contained in
s?attering data and deuteron proper-
ties. The leading correction to this two-
body-potential description in a nucleus
arises from three-body processes, in
which the internal degrees of freedom
In a given nucleon are excited by
interacting with one nucleon and de-
excited by interacting with a different
nucleon. Such processes only make a
small correction to the dominant two-
body physics and are described by
three-body forces. Thus, like liquid
helium, the nuclear many-body prob-
lem is essentially reduced to the study
of a nonrelativistic quantum system
interacting via very strong short-range
forces.

We now confront the essential ques-

0031-9228 / 85 / 0400 24- 11 /$01.00 @ 1985 American Institite nf Physics



Spontaneous fission. This sequence of
density contours shows the spontaneous
fission of a Be® nucleus into two a
particles; the outer and inner contours
show the surfaces at which the density is
'a and % of the central density of the
original Be® nucleus. The self-consistent
computations for this process were
performed on the Cray computer at the Los
Alamos National Lab. The size of the
systems that can be studied is at

present limited by the capacity of the
computer. Figure 1

tion of the nonrelativistic nuclear
many-body problem: Why should a
self-bound system with strong short-
range interactions give rise to shell
structure and be describable by a mean-
field theory? The Hartree theory of an
atom, in which the electrons propagate
independently in a one-body mean
field, is intuitively well motivated.
First, there is a real, strong central
field arising from the nuclear charge Z
at the origin. Furthermore, because the
electrons interact via a smooth, long-
range force, it is plausible that the
dominant effect of all the other elec-
trons on a single electron is just the
average one-body Coulomb potential
they generate. Both of these features,
however, are missing in a nucleus, so
why should an independent-particle
approximation based on a mean field
still describe nuclear structure?

The answer lies in the Pauli exclu-
sion principle. Most of the two-body
scattering processes that could destroy
the simple shell model are prohibited
because the final states are already
occupied by other nucleons. Only vir-
tual excitations to high-energy unoccu-
pied states are permitted. But because
of the energy-time uncertainty rela-
tion, these excitations can only last a
short time and are thus restricted to
short distances. The net result is that
the overall wavefunction must look
very much like that of noninteracting
particles in a one-body potential well,
with little holes punched in it wherever
any two particles get very close togeth-
er and the Pauli principle permits the
potential to induce strong two-body
correlations.

The key to treating the strong nu-
cleon interaction is thus calculating
the short-range correlations in the
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Path integrals

The Feynman path integral expresses the propagation of a single particle
as an integral over trajectories in coordinate space. Mathematically, the
expression is obtained by breaking the evolution for a time 7 into n steps
of size e = T/n. For each step, one writes the unit operator in the form of
an integral over a complete set of coordinate states 1 = f dg|g> {g| with
the result

Carle =) = <g,le™ f dq.|g.><q.|e “”‘qun G
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Evaluation of the propagators (g, . , |e~"*¢|g, ) for each infinitesimal
time step then produces the familiar result
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where S is the classical action
T
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and | D{g(#)] is an integral over all possible paths g(¢). The quantum
propagator is thus expressed as the integral of the exponential of the
classical action over all possible trajectories.

The propagator for N fermions may be expressed analogously as an
integral over all possible trajectories in an appropriate space. We shall
thus represent the unit operator at each time step not by [ dg|g> {g| but
by an integral over an overcomplete set of Slater determinants

i= j D400 )] orhonorman | ¥s0> (e |

Here, |Vsp > is a completely antisymmetric linear combination of states of
the form (¢, (r,)>|¢(r2)) - - - |#,(ry)> and the appropriately normalized
integral only extends over orthonormal functions. Evaluation of the
propagators for each time step then yields the result
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where S(¥*, ¢¥) is the time-dependent Hartree—Fock action described in the
text. Omitting exchange terms, we can write it as

Sw*, ¥) = j dt[ j & S ¢* . (O)[i3/38) + (1/2m)V?]¢,, (x)
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This functional integral provides a bridge between the quantum many-
body propagator and the time-dependent Hartree-Fock action analogous
to the Feynman path integral bridge between the quantum propagator
and the classical action. In the stationary-phase approximation, the
propagator between two Slater determinants is dominated by the
exponential of a time-dependent Hartree-Fock solution, because the
requirement that the action S(¢*, ¢) is stationary yields the time-
dependent Hartree-Fock equation, and single-particle wavefunctions
satisfying these equations are automatically orthonormal.
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wavefunction. Two-particle correla-
tions are determined by a scattering
equation in which the nucleon-nucleon
interaction between two particles is
included explicitly; the remaining par-
ticles affect nucleon propagation via
the mean field and the prohibition of
scattering into states already occupied
by other particles.” One can systemati-
cally extend this formalism to n-body
correlations by solving an analogous
equation in which interactions between
n particles are included explicitly and
the remaining particles contribute via
the mean field and Pauli exclusion
principle. In effect, one is rearranging
the perturbation series expansion in
terms of correlations rather than pow-
ers of the (large) coupling constant.
Detailed numerical calculations for
bulk nuclear matter and light nuclei
including two- and three-body correla-
tions and estimates of four-body corre-
lations yield® two results crucial to the
development of mean-field theory:

» The hierarchy of correlation terms
converges sufficiently rapidly that the
overwhelmingly dominant contribu-
tions come from two-body correlations.
For these two-body correlations one can
define an effective interaction, or pseu-
dopotential, such that the matrix ele-
ment of the true two-body interaction
with the correlated wavefunction is
equal to the matrix element of the
effective potential with the uncorrelat-
ed single-particle wavefunction. Thus
all the physics of two-body correlations
can be included in an effective interac-
tion to be used with simple uncorrelat-
ed single-particle wavefunctions. This
effective interaction is strongly density
dependent: As the nuclear density
increases, more and more phase space
is excluded by the Pauli exclusion
principle, and the effective interaction
must become less and less attractive.
» The density one calculates with all
the many-particle correlations includ-
ed is higher than one finds experimen-
tally, although the binding energy of
bulk matter is correct. To compensate
for this, one introduces a small correc-
tion—at the level of a few percent of the
total potential energy—from a three-
body potential to include the effect of
ﬁuppressed subnuclear degrees of free-

om,

The mean-field theory

We now have all the elements for the
nuclear mean-field theory. The funda-
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Nuclear density distributions. The graphs show a comparison of
the theoretical (colored lines) and experimental (black lines) densities
of six different spherical nuclei. The experimental values (shading
indicates experimental uncertainty) are obtained from elastic electron
scattering and muonic x-ray transitions; theoretical values are from

mean-field calculations.

mental component is the effective
interaction between nucleons. It is
derived from the nucleon-nucleon po-
tential and thus incorporates our full
experimental knowledge of the nuclear
interaction. It includes all the physics
of two-body correlations—the little
holes punched in the many-body wave-
function by strong, short-range forces.
And it accounts for all but a small
fraction of the total nuclear potential
energy. To this microscopically de-
rived effective interaction we add a
small phenomenological density-depen-
dent correction to account for three-
and higher-body correlations and the
three-body force. The two parameters
in this correction are determined* to fit
the binding energy and equilibrium
density of bulk matter. Although the
derivation of the total effective interac-
tion involves technically complicated
numerical calculations, the final result
is essentially state independent and
may be represented*® in an extremely
simple and tractable form.

To derive the effective equations of
motion, we start with a quantum ana-

Figure 2

log of Hamilton’s principle, namely
that the action

S=J‘dt<wlii—H'\P>
at
is a stationary quantity. The wave-
function ¥ is the complete wavefunc-
tion of all nucleons in the nucleus.
Because nucleons are fermions, this
wavefunction must be completely anti-
symmetric in the variables for identical
particles. We can account for this by
writing the uncorrelated wavefunction
as a Slater determinant of single-
particle wavefunctions #, (r), that is, as
a sum of products ¢, (r,)¢, (rp)t(ry)
completely antisymmetrical with re-
spect to the coordinates ry,...Ty. We
obtain the mean-field approximation
by replacing V¥ in the action by a Slater
determinant and by replacing the two-
body interaction in H by the density-
dependent effective interaction uv.q.
This yields the action S(¥*,¥) discussed
in the box on the opposite page.
The action integral thus becomes® a
functional of the wavefunctions ¢, (r),
which play the role of canonical coordi-

nates in this Hamiltonian formalism;
the conjugate momenta are the conju-
gate wavefunctions iy, *(r). Requiring
the action S to be stationary with
respect to variations in the wavefunc-
tions ¢ yields, as in the classical Hamil-
tonian formalism, equations of motion.
In this case, they are the time-depen-
dent Hartree-Fock equations

. d
i = Uy (1)
= —(1/2m)V?y, (x,t)
+1 j AV ()2 Yy 0 W (1)

Xy (x,t)

I have simplified these equations some-
what by omitting the density depen-
dence of v,y and the exchange terms.
Actual calculations, of course, include
both.

These equations describe a time-
dependent mean-field theory in which
each single-particle wavefunction
evolves in the self-consistent field gen-
erated by all the other nucleons inter-
acting via the effective interaction. As
the total wavefunction ¥ changes its
spatial distribution, the evolution of
the little holes punched in it by strong
short-range forces is taken into account
through the density dependence of the
effective interaction.

Static solutions

The first quantitative test of the
theoretical ideas I have described is to
calculate the gross ground-state prop-
erties of finite nuclei. For this we need
stationary solutions to the time-depen-
dent Hartree-Fock equations, that is,
solitons of the form

Y (r,t)=e “m'g_(r)

In that case, the wavefunctions d(r)
satisfy a self-consistent eigenvalue
problem:

[ (1/2m)V? + V(X)) 4,,(r) = €., 8., (x)
where the self-consistent potential is

Vir) = J' 40, (0 — 1) S B8 ()6, ()

Solutions of these equations yield
excellent quantitative agreement with
observed nuclear properties through-
out the periodic table. Binding ener-
gies are typically reproduced to within
0.3 MeV per particle out of a total
potential energy per particle of 40
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From instantons to fission
a b c d
One simple way to study the quantum spectrum of a particle in a

potential is to find the poles in the trace of the propagator using a
Feynman path integral

> E El tin i E g’+ in =ij dTe'ETjdQID[qttl]e‘-“"?‘*"
n — n S— 0

If we apply the stationary-phase approximation to each of the three
integrals in the last expression, the result is given by the sum of the
exponentials of the classical action for all periodic trajectories having
classical energy E.
For a single well of the form shown in sketch a above, periodic

trajectories satisfying the classical equations

d9_ _owm

m 2 (q)

correspond to the motion of a marble rolling in a valley described by Vig).
A continuum of such periodic solutions exists, and in lowest
approximation the sum over classical solutions produces poles at those
energies for which a periodic trajectory has an action satisfying the Bohr-
Sommerfeld condition

2mn = §p¢df

When the integral over fluctuations is included, 27n is replaced by the
familiar factor (2n + %)

Now consider periodic solutions connecting the left and right minima in
the double well shown in sketch b. Clearly, for energies below the top of
the barrier there are no such periodic classical solutions: The marble will
roll down one of the valleys and oscillate around the corresponding
minimum. However, in performing the time integral in the path integral
above using the method of steepest descent, one is obliged to seek
stationary solutions for all values of T'in the complex plane. For purely
imaginary time, we may rewrite the equations in terms of a real variable
7= it so that the equation of motion involving two time derivatives
acquires an overall minus sign; we can group this minus sign with the
potential:

d’q
dr*
Thus stationary solutions for imaginary time correspond to classical
solutions in an inverted potential, as shown in sketch ¢. For the case of
the double well with two equally deep minima, the classical solutions
corresponding to a marble rolling from the top of one hill, across the
valley, and up to the top of the other hill has come to be known as an
instanton. Such periodic imaginary-time solutions exist in any potential
having a classical forbidden regime, and for example, the lifetime of a
metastable state in the potential shown in sketch d is given by such a
solution connecting the relative minimum to the outside of the barrier.
The generalization of this argument to the many-fermion problem
provides a microscopic theory of spontaneous fission.

m— = — V[ — Vig)]
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MeV, and charge radii agree with
experiment to within 0.05 fm. Thus
both the potential energy and spatial
extent are accurate to the order of one
percent.

High-energy, high-resolution elec-
tron scattering provides stringent tests
of the mean-field predictions for the
spatial distribution of charge in the
nucleus. Figure 2 shows the predicted*
radial charge densities for six spherical
nuclei. Note that the nuclei all have a
roughly constant interior density, mod-
ulated by density fluctuations arising
from single-particle shell structure,
and a surface layer in which the
density falls off in the same way for all
the nuclei. The quantitative predictive
power of the theory is demonstrated in
figure 3, which shows a comparison’ of
the scattering cross section of Pb*® for
elastic electron scattering as calculated
using the mean-field density and as
subsequently measured. The agree-
ment is good over 11 orders of magni-
tude.

One can invert® elastic-scattering
data to determine the charge distribu-
tion of the nucleus. If the data extend
to sufficiently large momentum trans-
fer, the density is given with high
precision. Figure 2 also shows such
experimentally derived charge distri-
butions; the agreement between the
mean-field calculations and experi-
ments is clearly good throughout the
periodic table.

A significant manifestation of the
interplay between single-particle and
collective degrees of freedom in nuclei
is the fact that nuclei in several regions
of the periodic table are intrinsically
deformed. Like a diatomic molecule, a
well-deformed nucleus has an entire
band of rotational states built upon a
single intrinsic state. By measuring
the elastic and inelastic scattering to
each state in the ground-state rota-
tional band, one can determine the
radial functions for each term in the
Legendre expansion of the deformed
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Elastic electron scattering from lead-208.
The solid curve shows a plot of scattered
intensity as a function of momentum
transfer as derived from mean-field
calculations; the experimental points were
obtained from the scattering of 502-MeV
electrons at Saclay. The excellent
agreement confirms the predicted radial
charge distribution in lead. Figure 3

intrinsic state and thus determine the
precise shape of the deformed nucleus.

A significant quantitative success of
the mean-field theory has been its
ability to predict correctly which heavy
nuclei are spherical and which are
deformed, and what the shapes of the
deformed nuclei are. The addition of
only a few neutrons is enough to tip the
balance between spherical and aspheri-
cal, and the mean field manifests this
sensitivity in correctly predicting,® for
example, Sm'*® to be spherical and
Sm'®? to be well deformed. Figure 4
shows another example of the predic-
tive power of the theory, in this case for
electron scattering to the lowest four
rotational states in the ground-state
band of U%*®; the theoretical curves®
are based on the deformed intrinsic
state of U?*®, whose shape was calculat-
ed before the precise high-resolution
experimental data® shown in the figure
were available.

From nuclei to neutron stars

The quantitative success of the
mean-field theory for terrestrially ob-
served nuclei provides us with a basis
for extrapolating it to nuclear struc-

Elastic and inelastic electron scattering
from uranium-208. The U2°® nucleus is
aspherical, so the ground state has a band
of rotational states, which can be excited
by electron scattering. The data come
from the energy-loss spectrometer at the
MIT Bates accelerator. The agreement
confirms our understanding of the shape of
this highly deformed nucleus. Figure 4

tures that may arise elsewhere in the
universe under experimentally inac-
cessible conditions. One such example
is the baryonic matter in a neutron
star. As a heavy star collapses under
its own gravitational field, it becomes
energetically favorable for more and
more of the protons and electrons to
combine to form neutrons: The Fermi
energy of an electron in a Fermi gas
increases so much with increasing den-
sity that it exceeds the nuclear energy
required to increase the ratio of neu-
trons to protons. If the temperature of
the star is below 10° K (corresponding
to a negligible 10 KeV on the nuclear
energy scale) and the density is below
1.6<10% baryons/cm? all the condi-
tions for the validity of the mean-field
theory are satisified. We can thus use
the theory to investigate the behavior
of neutron stars.

Figure 5 shows the sequence of nuclei
calculated'’ to occur in a chunk of
neutral matter as its density is in-
creased from roughly 0.1% of the typi-
cal nuclear-matter density to % nu-
clear density. The material starts as a
block of terrestrially observed Zr®°; as
it is compressed, the nuclei become
successively more neutron rich, until
neutrons eventually drip out of the
nuclei, forming a low-density neutron
gas in the intervening space. Eventual-
ly, as the density of the block ap-
proaches nuclear densities, the matter
distribution becomes uniform and is
composed primarily of neutrons with a
small component of protons. The study
of neutron-star matter at subnuclear
densities has important implications
for the equation of state of dense
matter, for the composition and observ-
able properties of the crusts of neutron
stars, and for supernova collapse.

Other terrestrially inaccessible con-
ditions govern the burning of nuclei in
the Sun and other stars and determine
the abundance of heavy elements pro-
duced by supernovae. These applica-
tions of the theory are at the frontier
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for fruitful interplay between nuclear
many-body theory and astrophysics.

Time-dependent problems

The physical ideas embodied in the
self-consistent calculations I have de-
scribed are clearly useful in under-
standing the nuclear ground state. To
apply these ideas to large-amplitude
collective motion and low-energy nu-
clear dynamics, we must return to the
time-dependent Hartree-Fock equa-
tion. The mean field contains all the
relevant information about shape and
hydrodynamic degrees of freedom built
into familiar collective models. Fur-
thermore, the time-dependent mean-
field theory is completely self-con-
tained, with the collective variables
and their dynamics being fully speci-
fied by the nuclear Hamiltonian and
the physical process under considera-
tion.

The equations of motion for the
single-particle wavefunctions ,(r,t)
specify a classical Hamiltonian field
theory of immense richness and com-
plexity. They allow us to follow the
evolution of nuclear wave packets
through collisions or reactions. For the
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moment, I will defer questions concern-
ing semiclassical aspects of the approxi-
mation and will focus first on its
application to nuclear collisions.

Consider the collision of two nuclei at
an energy of a few MeV per particle
above the Coulomb barrier, for which
the approximations we have discussed
make sense. The initial condition for a
nuclear collision is given by taking
ground states of the target and projec-
tile approaching each other with speci-
fied relative velocity and relative angu-
lar momentum. There is no known
analytical technique to even begin to
analyze such highly nonlinear coupled
integro-differential equations, so one
solves them numerically on a discrete
space-time mesh. The scale of the
computational problem is at the limits
of existing computers: For heavy nu-
clei, one must compute the values for a
hundred or more complex functions,
each defined on a mesh having tens of
points in each of three spatial dimen-
sions, for hundreds of time steps.

Figure 6 shows the calculated'’ re-
sults for two typical nuclear collisions.
The first sequence of contour plots, on
page 32, shows the evolution of the
density for a peripheral collision
between O'® and Ca®® at a laboratory
energy of 315 MeV. Each picture
shows the integrated density normal to
the reaction plane seen in the center-of-
mass frame. The oxygen nucleus ap-
proaches from the right and the cal-
cium nucleus approaches from the left.
They are separated by a large impact
parameter, corresponding to a relative
angular momentum of 804, so that they
overlap only slightly as they pass
through each other. Nevertheless, the
final fragments are very different from
the initial ground states. In addition to
the significant distortion of the density
visible in the figure, many nucleons
have been transferred between the two
nuclei, and much of the initial collec-
tive translational kinetic energy has
been converted into internal excitation
energy.

Just how dramatic the nonlinear
collective effects can be is shown in the
other sequence of figure 6. This colli-
sion is slightly more head-on. The
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nuclei now have a relative angular
momentum of 604 Instead of grazing
each other, the nuclei fuse together and
form a single compound nucleus. All of
the collective translational kinetic en-
ergy is transferred into single-particle
degrees of freedom. The time-depen-
dent Hartree-Fock theory is rich
enough that an infinitesimal change in
a continuous variable specifying the
initial condition—in this case the rela-
tive angular momentum—gives rise to
a discontinuous change in qualitative
behavior—in this case the transition
from fission to fusion. To complement
the large-scale numerical calculations,
we have gained a significant insight
into the way complex physics comes!?
from single-particle behavior by phys-
ical arguments and studies of simpli-
fied geometries.

There are two important experimen-
tal tests of this mean-field description
of nuclear dynamics: the systematics
of fusion cross sections and the energy
loss in deep-inelastic collisions. The
fusion cross section in the time-depen-
dent Hartree-Fock approximation is
given by a semiclassical expression
that involves a sum over all relative
angular momenta for which the target
and projectile fuse. Figure 7 shows the
results of mean-field calculations® for
the fusion of 0'® 4 06 at a variety of
bombarding energies as well as results
of experimental measurements'* of the
fusion cross section. The theory repro-
duces quantitatively the effects of ener-
gy dissipation from collective to single-
particle degrees of freedom over a wide
range of bombarding energies. At the
lowest energies, the theory correctly
describes the transition from widely
separated Coulomb trajectories for
which the nuclei never overlap to
configurations like the nearly head-on
collision shown in the sequence on page
33, in which sufficient dissipation oc-
curs to cause fusion. The theory con-
tinues to match the experimental data
for high energies despite a change in
behavior: Although increasingly many
values of the angular momentum corre-
spond to substantial overlap at the
highest energies, the relative velocities
become so high that for many angular

momenta the dissipation is insufficient
to make the system fuse. Mean-field
theory has had similar quantitative
successes for a variety of light and
intermediate nuclei. A particularly
striking example is the calculated fu-
sion cross section for Ca%l 4 Ca®
which was in serious disagreement
with the then-available experimental
data; subsequent remeasurements,
however, showed good agreement with
the theory.

The large energy losses observed in
what have come to be known as deep-
inelastic heavy-ion collisions were a
great surprise to nuclear experimenta-
lists: Over a wide range of kinematical
conditions, many of the collision frag-
ments in a heavy-ion collision corre-
spond to nuclei with roughly the
masses of the target and projectile, but
with such high excitation energies that
almost all of the original translational
kinetic energy is converted into inter-
nal excitation energy. Again, the evo-
lution of single-particle wavefunctions
in the mean-field approximation pro-
vides the microscopic explanation for
this pronounced dissipation. Quantita-
tive comparison with experiment for
deep-inelastic scattering of heavy nu-
clei, sach as Kr®* + Bi?%® or
Xe'®® 4+ Bi*® is more difficult than the
evaluation of light-ion fusion cross
sections, both because of the semiclassi-
cal nature of the time-dependent Har-
tree-Fock approximation and because
computational limitations necessitate
additional physical approximations for
very large systems. Nevertheless, the
time-dependent mean-field calcula-
tions have successfully accounted for
80-100% of the energy dissipation ob-
served experimentally in a variety of
heavy-ion collisions.

Path integrals and the mean field

Although the time-dependent Har-
tree-Fock theory embodies a great deal
of the physics of nuclear dynamics, it is
limited by its semiclassical character.
As it stands, it is not clear how to use it
to calculate quantized eigenstates of
collective vibrations, how to calculate a
quantum-mechanical differential cross
section, or how to treat the quantum-
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mechanical tunneling that arises in
spontaneous fission. Having already
seen how the static mean-field theory
can be understood as the first step in a
systematic sequence of approximations
In quantum many-body perturbation
theory, we now seek a corresponding
quantum mechanical framework for
understanding the time-dependent
mean-field theory.

A beautiful and powerful physical
framework for such an understanding
1s provided by path integrals. As sum-
marized in the box on page 26, the
Feynman path integral’® for a single
particle in a potential expresses the
quantum amplitude for propagating
from an initial state with a particle at
position g; to a final state with the
particle at g, as an integral over an
exponential containing the classical

n = 0.25/fm*

n=0.88/fm*

n=577/fm*

n=47.5/ fm®

action

<grle=HT g s

- f D[qm]exp[ffch[qm]]

A useful approximation is obtained
from the familiar stationary-phase ap-
proximation. The dominant contribu-
tion to the integral comes from that
trajectory g(t) for which the action is
stationary. But variation of the action
Slq(#)] just yields the classical motion
for a particle in the potential, so the
dominant contribution is proportional
to eSl*Wl where 4(¢) is the classical
trajectory for a particle propagating
from g, to g, in time 7. Systematic
corrections to this classical approxima-
tion are obtained by expanding S[g(¢)]
around the classical solution ¢(#) and

Nuclear matter in neutron stars. The
progression of graphs shows the calculated
density of neutrons (black) and protons
(color) as a chunk of material is squeezed
to successively higher densities. The
material starts out as terrestrial Zr®, at
0.1% of nuclear density, or 2.5 x 103
baryons/cm?®. As the material is
compressed, the Fermi energy of the
electrons surrounding the atoms becomes
so large that it is energetically favorable for
some of them to combine with protons to
form neutrons. Eventually neutrons drip

out of the nuclei to form a gas. For the
highest density shown, roughly % of
nuclear density, there are about 30
neutrons for each proton.

Figure 5

performing the resulting integral over
the fluctuations g(t) — £(¢). The crucial
feature for our present purpose is the
fact that the leading term in a systema-
tic quantum theory is given by classical
equations obtained from the condition
that the classical action is stationary.

There are several essentially equiva-
lent ways to derive an analogous func-
tional integral for the many-fermion
problem; these make use of an auxil-
iary field, fermion coherent states, or
overcomplete sets of Slater determi-
nants. Because of its similarity to the
Feynman path integral, I outline the
method using Slater determinants® in
the box on page 26.

The features of the theory, which are
derived'”'® in detail in the literature,
are intuitively plausible generaliza-
tions of the single-particle theory. In
summary, the correspondence between
the single-particle and many-fermion
results is as follows:

B The integral of e’ over all paths in
coordinate space is replaced by an
integral of e'® over all paths in the
space of Slater determinants.

» The time-dependent Hartree-Fock
action S[¢*(r,t),¥(r,t)] replaces the clas-
sical action S[g(?)].

» The canonically conjugate fields
Y(r,t) and iy*(r,t) correspond to the
classical coordinate g and the conjugate
momentum p.

» In the stationary-phase approxima-
tion, the action is dominated by solu-
tions to the time-dependent Hartree—
Fock equations instead of the classical
trajectory

» Quantized eigenstates are given by
periodic solutions to the time-depen-
dent Hartree-Fock equations with an
orthonormalization constraint rather
than by periodic classical trajectories;
the quantization condition

[atar 5 iv, w000, w00t
=27n

replaces the Bohr-Sommerfeld condi-
tion

Jdtp(t) dq(t)/dt = 2mn
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P Tunneling solutions in classically
forbidden regions are obtained by re-
placing it by the real variable 7 as in
the one-particle case.

The equations for quantized eigen-
states, again written without exchange
terms for simplicity, pose the following
self-consistent eigenvalue problem in
four space-time dimensions'?

[ —id/dt — (1/2m)V? + Vir,0)]4,, (r,t)
= Am l;"}m (r,!)

Vir,t) = fd®r'v(r — r') S, @, (x',t)
Ut =4y, (r0)

Note that these equations are analo-
gous in structure to the static Hartree—
Fock eigenvalue problem I described
earlier, but these contain an extra time
variable. One may think of the param-
eters A, as Lagrange multipliers en-
forcing the orthonormality of the wave-
functions ¥* and ¢ required in the
functional integral. By using suitable
iterative techniques, one can find solu-
tions to these equations for a contin-
uum of values of the period T the
quantum eigenstates are specified by
the discrete values of 7 such that

-
J'mfw&zamanmzsz
In the limit in which each v, (rf)
differs only infinitesimally from the

static Hartree-Fock solution ¢, (r),
these equations reduce'” to the familiar
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random-phase approximation, which
has proved to be extremely successful
in describing a broad range of small-
amplitude collective phenomena in nu-
clei. For example, the same level of
quantitative precision is obtained in
predicting the inelastic electron scat-
tering to collective excited states in
Pb?"™ as that shown in figure 3 for the
ground state. For large-amplitude col-
lective motions, these equations pro-
vide the only theory currently avail-
able that does not require additional
adiabatic assumptions or the imposi-
tion of prescriptions for collective var-
iables.

Spontaneous fission

The box on page 28 shows how to
extract the quantum mechanics of a
single particle moving the classically
forbidden region of a potential from the
Feynman path integral by considering
stationary points in the action corre-
sponding to imaginary time. A pictur-
esque way to think about the two
factors of i in the equation of motion
arising from the replacement it — r is
to consider the classical motion in the
inverted potential — Vig).

The idea that such imaginary-time
solutions may dominate the action in
certain circumstances, first intro-
duced' in the study of bubble forma-
tion, provides a foundation for the
theory of spontaneous fission. Several
technical points arise in the course of
the derivation that are not obvious
from the analogy presented here. It

turns out that the appropriate analytic
continuation of the conjugate field is
Yir,t*)* so that the fields ¢*(r,t) and
Yr,t) are replaced by new fields
¥{r, — 7) and #r,7). Furthermore, the
fact that the relevant many-body po-
tential has been inverted is only ob-
vious if one transforms from the fields
¥* and ¢ to their modulus and phase.
The final result is that the contribution
to the action governing the tunneling
between the metastable ground state of
a fissile nucleus and a particular open
reaction channel with separating fis-
sion fragments is given by the solution
to the self-consistent equation

[0/97 — (1/2m)V? + Vir,7),, (x,7)
= ;’Lm ﬁ’rm (r,7)
Vir,7) = fd% v(r — r')
X2 U, (¥, — ), (2,7
¢, (0, 1) = ¢, (r,0)
Given a solution to these equations for
each reaction channel ¢, the inverse

lifetime is a sum over partial widths for
each reaction channel

[ =3, lim I()
A Ti2
WWﬂ:Kmd-f w[&r
— T
XY U (T, — 1) 0 {bm(r'r)]
el ar

'_I‘he factor K is obtained from integrat-
Ing quadratic fluctuations around the
stationary solution. Since #r) and



#{ — 7) now play the role of coordinates
and momenta, the expression for I has
a form like that resulting from the
Wenzel-Kramers-Brillouin method

]

The self-consistent wavefunction
evolves from the metastable ground
state of the parent nucleus, through a
classically forbidden region, to a point
at which two just-separated daughters
have reentered the classically allowed
region. Figure 8 shows this process'®
for a one-dimensional nucleus contain-
ing 16 particles. The graphs show
density profiles at successive values of
the imaginary time 7, starting with the
ground-state density of the parent, and
concluding with the final, classically
allowed state in which the system has
nearly separated into two eight-parti-
cle clusters.

Applying these ideas to realistic nu-
c_lei is limited thus far by the computa-
tional scope of the problem. One must
solve a set of coupled self-consistent
integro-differential space-time equa-
tions; a heavy nucleus requires up to a
hundred wavefunctions defined on tens
of mesh points in each of four space-
time dimensions. The first solution of
the tunneling equations for a physical
system having nontrivial space-time
geometry is a prototype calculation' of
the fission of Be® into two a particles.
The results are shown in figure 1. The
calculation demonstrates the ability of
the theory to select the relevant shapes

Fr=2ex
2m 4

and collective degrees of freedom that

dominate the action. Once we can
apply it to heavy fissile nuclei, this
theory will provide the first microscop-
ic quantum framework that takes into
account the bulk liquid-drop behavior,
the collective dynamics and the single-
particle effects to which fission obser-
vables are known to be extremely
sensitive.

Nuclear partition function

Evaluating the many-fermion path
integral in imaginary time also pro-
vides a means to calculate®® the nuclear
partition function Z = tr(e #*). The
nuclear system to which quantum sta-
tistical mechanics is clearly relevant is
the hot equilibrated baryon matter in
neutron stars. The mean-field approxi-
mation provides an obvious generaliza-
tion of the zero-temperature Hartree-
Fock approximation. By weighting
each single-particle state with a ther-
mal occupation factor, one can use the
theory to provide a framework for
calculating observables of astrophys-
ical interest such as the level density
and equation of state of neutron-star
matter at finite temperature.

The finite-temperature theory has
also been used to obtain an approxima-
tion to the nonequilibrium statistical
mechanics of compound nuclei. The
excited compound nuclei created in
nuclear reactions decay by photon and
particle emission; their statistical be-
havior during this process indicates a
high degree of equilibration. One can

Collision between O'® and Ca*®. The
sequence of contour plots on the opposite
page shows a grazing collision: The
impact parameter is nearly the sum of the
nuclear radii (the relative angular
momentum is 807); nonetheless, a
considerable amount of distortion and
excitation results. In the sequence shown
at left, on this page, the impact parameter
is slightly smaller (the relative angular
momentum is 604), and the collision results
in fusion of the nuclei. Figure 6

make use of this thermal equilibrium
to find approximate descriptions of
induced fission?® and the statistical
properties of highly excited nuclei.*!
The finite-temperature mean-field the-
ory allows one to find the properties of
a box containing a hot nucleus in
equilibrium with a low-density nucleon
gas; after subtracting the background
contribution of the low-density gas, one
has an approximation to the compound
nucleus.

The applications of nuclear mean-
field theory I have surveyed suggest the
range of phenomena that it can explain
microscopically and indicate the quan-
titative precision it can provide. But
these achievements should not obscure
the remaining open challenges. Al-
though we know how to calculate
simple observables such as the fission
lifetime, and although we have made
some progress® in approximating tran-
sition amplitudes, we have yet to work
out a practical formulation of scatter-
ing theory that allows one to calculate
such interesting observables as inclu-
sive cross sections, fusion probability in
subbarrier heavy-ion reactions, or the
cross sections for forming superheavy
nuclei. Substantial formal questions
remain, such as understanding the
range of validity of the stationary-
phase approximation and properly em-
bedding the effective interaction in the
path-integral formulation. There are
as well the formidable computational
problems that I have mentioned. Look-
ing beyond nuclear physics, small drops
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Nuclear fission. The graphs show a sequence of density profiles representing the most probable path for the fission
a hypothetical 16-particle, one-dimensional nucleus. This mean-field result for the many-body problem is analogous

the instanton described in the box on page 28.

of liquid He®, He* and noble gases will
pose a broad range of related problems
when experimental techniques are de-
veloped to observe them. Many chal-
lenges remain in fully understanding
the physics of small drops of dense,
strongly interacting quantum physics.

References

1. Extensive references to the work sur-
veyed in this article are given in J. W.
Negele, Rev. Mod. Phys. 54, 913 (1982).

2. K. A. Brueckner, C. A. Levinson, Phys.
Rev. 97, 1344 (195). K. A. Brueckner,
Phys. Rev. 97, 1353 (1955); 100, 36
(1955). H. A. Bethe, J. Goldstone, Proc.

R. Soc. Lond. A238, 551 (1957). L. C.
Gomes, J. D. Walecka, V. F. Weisskopf,
Ann. Phys. (N.Y.) 3, 241 (1958); H. A
Bethe, Phys. Rev. B138, 804 (1965).

. B. D. Day, Rev. Mod. Phys. 50, 495

(1978); H. K. Kiimmel, K. Lilhrmann, J.
Zabolitsky, Phys. Rep. C36, 1 (1978).

. J. W. Negele, D. Vautherin, Phys. Rev. C

5,1472(1972); J. W. Negele, Phys. Rev. C
1, 1260 (1970); D. Gogny in, Nuclear
Self-Consistent Fields, G. Ripka, M. Por-
neuf, eds., North-Holland, Amsterdam
(1975), p. 33.

. J. L. Friar, J. W. Negele, Adv. Nucl.

Phys. 8, 219 (1975).

. A. K. Kerman, S. E. Koonin, Ann. Phys.

(N.Y.) 100, 322 (1976).

1.5
z
[
=
% *.’. |
- 1.0 |
7 o
7
Q
3 05
w
= |
|
0 =1 | ]
20 40 E]h 80 100 120

LAB ENERGY E (MeV)

Cross sections for the fusion of colliding oxygen nuclei as a function
of the bombarding energy. The mean-field predictions (color) clearly

account for the main features of the data (black), in particular, for the
dissipation of energy from collective to single-particle degrees of

freedom.

34 PHYSICS TODAY / APRIL 1985

Figure 7

{1

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. J. W. Negele, G. Rinker, Phys. Rev. C15,

. C. Creswell, PhD dissertation, Masagf-

Figure 8

i'nr ¥
B. Frois, et al., Phys. Rev. Lett. 38, 152
(1977).

1499 (1977).

chusetts Institute of Technology {19773.
J. W. Negele, D. Vautherin, Nucl. Phyg
A207, 298 (1973).
M. S. Weiss, Fizika 9, Suppl. 3, 315|
(1977).

P. Bonche, S. E. Koonin, J. W. Negele,
Phys. Rev. C 13, 1226 (1976); G. F.
Bertsch, in Nuclear Physics with Heavy
Ions and Mesons, Les Houches Summer
School XXX, R. Balian, M. Rho, G.
Ripka, eds., North-Holland, Amsterdam
(1978).

P. Bonche, B. Grammaticos, S. E.
Koonin, Phys. Rev. C 17, 1700 (1978).
M. Conjeaud, et al., in Proe. Int. Conf. on
Nuclear Structure, Tokyo, September
1977, International Academic Printing
Co., Japan (1977) p. 663 |
R. P. Feynman, A. Hibbs, Quantum Me-
chanics and Path Integrals, McGraw-
Hill, New York (1965).

H. Kuratsuji, T. Suzuki, Phys. Lett. B92,
19 (1980); J. P. Blaizot, H. Orland, Phys.
Rev. C 24, 1740 (1981).

S. Levit, J. W. Negele, Z. Paltiel, Phys.
Rev. C 21 1603 (1980); H. Remhardﬁ*
Nucl. Phys. A346, 1 (1980). i
S. Levit, J. W. Negele, Z. Paltiel, Phys.
Rev. C 22, 1979 (1980); H. Reinhardt,
Nucl. Phys. A367, 269 (1981).

J. Langer, Ann. Phys. (N.Y.) 54,
(1969). K
A.K. Kerman, S. Levit, Phys. Rev. C 24,
1029 (1981). g
P. Bonche, S. Levit, D. Vautherin, Nuel
Phys. A427, 278 (1984); A436, 265 (198
S. Levit, Phys. Rev. C 21, 1594 (1980);
Alhassid, S. E. Koonin, Phys. Rev. C'
1590 (1981); R. Balian, M. Vénéroni,
Phys. Rev. Lett. 47, 1353 (1981).




