

MacAdam, *Color Research and Application* 8, 123 (1983).

3. D. L. MacAdam, *J. Opt. Soc. Am.* 65, 483 (1975).

4. D. L. MacAdam, *Color Measurement: Theme and Variations*, Springer-Verlag, New York (1981).

DAVID L. MACADAM
The Institute of Optics
University of Rochester

Rochester, New York

10/84

THE AUTHOR COMMENTS: Because only MacAdam's third comment directly relates to the theme of my article, I will confine myself to it. My concern was not in the first place with Newton's color theory, but rather with the historical development of his method and his first attempt to mathematize an entire area of physics. Because Newton attempted to mathematize the science of color by means of spectroscopy and dispersion theory, they were obviously fundamental for him and not at all incidental. The main point, however, is not what is essential or fundamental now, but Newton's bold and imaginative attempt to create a new branch of mathematical physics before the *Principia*, his willingness to recognize his lack of success, and his ability to recast his initial work into an experimental form.

I am aware of the significance of Newton's color circle and have described¹ it elsewhere. Newton, however, did not recognize its true significance as described by MacAdam. It was to take another 150 years before Hermann Grassmann recognized² that it could serve as the foundation of colorimetry. MacAdam's account of Newton's color circle is misleading, for it conflates what we today deduce from his color circle with what Newton deduced. To illustrate this I will consider his comments on Newton's Experiment 13. MacAdam states that this experiment proved that three primary colors were sufficient to compound white, and also that a wide variety of pairs of colors (complementaries) could also produce white. However, in Experiment 13 Newton himself says³ that "rays of every sort," not just three sorts (or colors), were mixed to produce white. Moreover, in describing his color circle Newton explicitly denies⁴ that there exists even a single pair of complementaries, let alone a wide variety: "I could never yet by mixing only two primary Colours produce a perfect white."

As late as 1852, Hermann von Helmholtz, with his vastly more sophisticated experimental apparatus, was able to discover⁵ only one pair of complementaries. It was only after Grassmann finally recognized the true significance of Newton's color circle and pointed out

to Helmholtz that it implied that there must be many complementaries, that Helmholtz succeeded in locating⁶ a wide variety. By attributing such a complete understanding of his color circle and its experimental implications to Newton, MacAdam in effect eliminates 150 years of very exciting history. The difference of emphasis between MacAdam and me, of course, depends on our different principal interests, his being colorimetry and mine history.

References

1. A. E. Shapiro, *Isis* 71, 211 (1980).
2. H. G. Grassmann, *Ann. Phys. Chem.*, ser. 2, 89, 69 (1853) [*Philos. Mag. ser. 4*, 7, 254 (1854)].
3. I. Newton, *Opticks*, Dover, New York (1952) p. 149.
4. D. L. MacAdam, *Color Research and Application* 8, 123 (1983) p. 156.
5. H. von Helmholtz, *Ann. Phys. Chem.*, ser. 2, 87, 45 (1852) [*Philos. Mag. ser. 4*, 4, 519 (1852)].
6. H. von Helmholtz, *Ann. Phys. Chem.*, ser. 2, 94, 1 (1855).

ALAN E. SHAPIRO
University of Minnesota
Minneapolis, Minnesota

2/85

Word-processed manuscripts

When I was managing editor of the *Proceedings of the National Academy of Sciences*, I found that many of the manuscripts created by modern word-processing methods have serious defects. Fortunately, these defects are the result of lack of attention rather than flaws inherent in the methods. I am writing this letter to call attention to the problem areas in the hope of decreasing the disadvantages without affecting the advantages.

To set the stage, first I will state the important physical requirements of a manuscript, which derive from the things that happen to the manuscript in the course of its conversion from typescript to printed page. It must be on relatively sturdy paper, because it will be handled by 6 to 12 people. It must be easily readable at high speed, because several workers not familiar with the subject matter or the vocabulary, such as keyboarders and proofreaders, must process it. It must have generous margins and interline spaces, because editors need room for their instructions to the production personnel.

Paper quality is mainly a question of what the paper should not do. It should not wrinkle or tear easily. It should not be so shiny that glare makes reading difficult. It should not be so porous that ink spreads, or so heavily coated that finger pressure deletes editorial

continued on page 102

Only we match up to
these specs in

DILUTION REFRIGERATORS

- Temperatures below 5 mK
- Cooling power up to 1000 μ W
- Integral magnet up to 15T
- Top loading while running
- Direct side access to sample
- A portable system for hostile environments
- Two year warranty
- An installation and user training scheme

If you need further proof,
send for more details.

Oxford Instruments Limited

Osney Mead, Oxford OX2 0DX, England
Tel: (0865) 241456 Telex: 83413

Oxford Instruments North America Inc.

3A Alfred Circle, Bedford, Massachusetts 01730, USA
Tel: (617) 275-4350 Telex 230 951 352

OXFORD

EVERYTHING CRYOGENIC

Circle number 15 on Reader Service Card

MATERIALS
RESEARCH
SOCIETY

Meeting & Show

FALL MEETING

December 2-6, 1985

*TECHNICAL SYMPOSIA *EQUIPMENT SHOW *SHORT COURSES

BOSTON MARRIOTT HOTEL/COPLEY PLACE
BOSTON, MASSACHUSETTS USA

TECHNICAL PROGRAM. A series of 22 symposia on topics at the forefront of materials research constitutes the technical program. MRS symposia are interdisciplinary, spanning the range from basic research to applications. The goal is to insure that all possible physical, chemical, and engineering insights are considered for the topic under examination. Symposium topics are:

- A. Beam-Solid Interactions and Phase Transformations
- B. Rapid Thermal Processing
- C. SOI/TFT Technology
- D. Beam Induced Chemical Processes
- E. Thin Films—Interfaces and Phenomena
- F. Transport and Excitation in Polymers
- G. Biomedical Materials
- H. Layered Structures and Epitaxy
- I. Phase Transitions in Condensed Systems—Experiments and Theory
- J. Rapidly Solidified Alloys: Magnetic and Mechanical Properties
- K. Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon
- L. Defect Properties and Processing in High Technology Nonmetallic Materials
- M. Oxides, Zeolites and Clays in Catalysis
- N. Fractal Aspects of Materials
- O. Nonlinear Optical Materials
- P. Defects in Glasses
- Q. Electron Microscopy in Materials
- R. Computer-Based Microscopic Description of the Structure and Properties of Materials
- S. Cement-Based Composites: Strain Rate Effects on Fracture
- T. Fly Ash and Coal Conversion By-Products
- X. Frontiers of Materials Research (invited papers only)
- Y. Frontiers in Materials Education

ABSTRACTS FOR CONTRIBUTED PAPERS ARE DUE BY JUNE 14, 1985

EQUIPMENT SHOW. Over 100 companies will display analytical and processing equipment closely matching the content of the technical program during the three-day Equipment Show.

SHORT COURSES. A program of one- and two-day short courses will complement the science and technology presented in the technical symposia and provide an introduction to other current technologies.

PLACEMENT SERVICE—for candidates seeking employment and prospective employers. For information and registration forms, contact AIP Placement (212) 661-9404.

FOR FURTHER INFORMATION CONTACT

John B. Ballance, Executive Director
Materials Research Society
9800 McKnight Road, Suite 327
Pittsburgh, PA 15237 USA
(412) 367-3003

letters

continued from page 15

markings or type. It should not be so slick that it is difficult to stack, or so flimsy that it is completely limp. I suspect that in many instances the paper for a word-processor output device is chosen for its price and its ability to accept the imprint of the output device. However, for manuscript work, durability and ability to accept pencil and pen markings must also be considered.

One now sees a wide range of typeface styles in manuscripts. Quite a few are hard to read and therefore are unsatisfactory. In fact, we have returned manuscripts to authors for re-typing in a clearer typeface. There are two styles that are especially poor. In one of these, the "lines" that make up the letters actually are series of dots. In the straight strokes of letters, such as the verticals of the letter "m," the dots are close enough together to create a line. However, in the sharply curved portions, the dots are well separated and sometimes the "line" disappears. The other poor style is a typeface in which the lowercase letters have no descenders. At first glance the typed page looks lovely. On closer inspection, as in reading, "g" looks like "s," and other letters are hard to identify. This typeface may be machine-readable but it is not person-readable.

Another factor is related to ease of reading but is independent of typeface. This factor is the damage done to create a justified right edge. Again, the product looks lovely at first glance. Or at least both edges of the text are straight, uniform and crisp. The type-covered portion of the page, where the reader has to read, is shot full of randomly distributed spaces of different sizes. In other words, the price for a straight right edge is a jumbled interior. The gain is not worth the price. The variation in interword spacing in this type of text is much greater than one finds in "real" printed text (probably because computer control of photocomposition is much more elaborate). I find the marked variation of spacing in this kind of typescript very distracting, which makes the page difficult to read; also, we find that our size calculations have greater error factors.

I suspect that, with the development of word-processor equipment, many institutions have created centralized word-processor services. I also suspect that authors send to these services their tapes, cassettes, disks, and such to be converted to hard copy without mentioning the spacing requirements stipulated by the journal of their choice. We have seen a sharp increase in manuscripts with less-than-adequate margins or interline spacing.

Our Experience Shows

Edwards has been building vacuum pumps for more than 60 years. In learning to create vacuums, we've had to learn all about measuring them—quickly, easily, precisely.

The result is a line of practical hard-working instruments, including:

- The new Controller 503 covering the range 760 to 10^{-3} torr with two set points that can be adjusted over the range 100 to 10^{-3} torr on 230° circular scale.
- Series 1000 microprocessor-based digital gauges, controllers and combinations to simplify and broaden measuring systems covering the range 760 to 5×10^{-8} torr.
- Model 1502 thermocouple-ionization gauge controller with state-of-the art microprocessor control for up-to-the minute readouts with complete front panel process control.
- Series 2000 vacuum controllers, fully programmable for unmatched process control with any system over the range 760 to 10^{-11} torr.

Put Edwards experience to work for you.
Call today for details: (716) 773-7552

Edwards High Vacuum, Inc.
3279 Grand Island Blvd.
Grand Island, NY 14072

IMSL Quality

Mathematical and Statistical FORTRAN Subroutines for IBM Personal Computers

Today's personal computers have the power and sophistication for work in science, engineering, and other technical fields. Now IMSL has developed MATH/PC-LIBRARY, STAT/PC-LIBRARY and SFUN/LIBRARY — software equal to the task of serious mathematical and statistical FORTRAN programming on IBM personal computers.

MATH/PC-LIBRARY

Subroutines for a wide variety of mathematical applications.

STAT/PC-LIBRARY

An efficacious selection of statistical subroutines.

SFUN/LIBRARY

The most comprehensive subprogram library available for evaluating mathematical and statistical special functions.

A Step Beyond other FORTRAN Libraries

Unlike other PC-compatible FORTRAN libraries, these versatile resources are part of IMSL's integrated system of FORTRAN libraries, offering a uniform approach to problem solving across a wide range of computer types and sizes. The IMSL libraries are ideally suited to today's multiple-computer environments, providing accurate results whether you're using your PC or a supercomputer.

With MATH/PC-LIBRARY, STAT/PC-LIBRARY and SFUN/LIBRARY you can select complete, thoroughly tested subroutines instead of writing them. You'll reduce development time, decrease maintenance costs, and enjoy the accuracy and dependability that have made IMSL a world leader in advanced numerical software systems.

World-Class Software Resources for Your PC

MATH/PC-LIBRARY and STAT/PC-LIBRARY contain the most frequently-used subroutines from the IMSL Library — a resource chosen by corporations, universities, research centers and governments in more than 50 countries. SFUN/LIBRARY offers a versatile set of subprograms for evaluating mathematical and statistical special functions.

Formerly available only for mainframes and minicomputers, these subroutines can now expand the programming capabilities of your personal computer.

MATH/PC-LIBRARY and STAT/PC-LIBRARY are available for IBM PC, PC XT, PC AT, and Portable PC systems running either IBM Professional FORTRAN or Microsoft FORTRAN 3.20. SFUN/LIBRARY is available only for IBM Professional FORTRAN environments.

IMSL

Problem-Solving Software Systems

For complete technical information, return this coupon to IMSL, NBC Building, 7500 Bellaire Boulevard, Houston, Texas 77036 USA. Telephone: (713) 772-1927. Telex: 791923 IMSL INC HOU. In the U.S. (outside Texas), call toll-free 1-800-222-IMSL.

Send complete technical information about:
 MATH/PC-LIBRARY SFUN/LIBRARY
 STAT/PC-LIBRARY

Name _____

Dept. _____ Title _____

Organization _____

Address _____

City/State _____ Code _____

Area Code/Phone _____

Telex _____

Computer _____ Operating System _____

FORTRAN Compiler/Version _____ PT45

Copyright © 1985 IMSL, Inc.

How sad that the product of such elegant technologic achievements is useless because of inattention to simple but important details. We concluded that attempts to redact manuscripts with inadequate space results in an increase in typographic errors. Therefore, at the National Academy, we sent all such manuscripts back to the authors. We required side, top and bottom margins to be no less than 4 cm and interline white space to be 6 mm or greater. Our editors could write smaller than this, but the keyboarders could not read such writing.

Which leads to the bottom line of this sermon. The typescript must be easily readable by a busy editor. And the marked-up transcript must be easily readable by a keyboarder. Editing time, keyboarding time and proofreading time are too expensive to warrant working on manuscripts that are not in good form physically.

BERNARD K. FORSCHER

Mayo Clinic and Mayo Foundation

1/85

Rochester, Minnesota

These remarks first appeared in the Newsletter of the Society for Scholarly Publishing 6, issue 5 (1984).

AN APS EDITOR COMMENTS: Although Bernard Forscher's comments are directed toward manuscripts produced by word processors, much of what he says is applicable to all kinds of manuscripts.

The journals of The American Physical Society have never been as rigid in their requirements as Forscher's letter indicates the National Academy to be. Nevertheless, we do make certain demands, and it would probably be helpful if authors understood the reasons for them. In addition, some things that we are not particular about may still influence a referee's attitude about a paper, so that authors can do themselves a favor by paying attention not only to the content but also to the preparation of their manuscripts.

GEORGE L. TRIGG

3/85

Physical Review Letters

Fellow-travelers

In the worst years of Stalin's terror, there was a category of educated Westerners, who not only loudly applauded Stalin, but from time to time visited the Soviet Union and saw there what they wanted to see, not what was really there. Denizens of the Communist paradise would read their reports wondering what it was on the part of those foreigners: unbelievable short-sightedness and stupidity or a cynical pursuit of their own goals?