
The physics of dance
Analyzing movements of dance in terms of Newtonian mechanics
yields insights into aesthetic performance, and can be of value not only to
students and teachers, but also to spectators of dance.

Kenneth Laws

Most dance enthusiasts—dancers, teachers
and spectators—consider dance to be a
purely aesthetic performing art, involving
human body movement performed to mu-
sic. They recognize that the challenge for
the dancer is to communicate the visual
images intended by the choreographer and
the dancer. Many also realize that part of
the enjoyment of dance depends on recog-
nizing the difficulty of performing these
movements well—making physically chal-
lenging steps appear smooth and graceful.
Few, however, take the further step of
analyzing the physics of these movements
to understand the difficulties facing the
performer. Why are certain movements
particularly difficult? Some movements
appear to violate fundamental physical
principles. How does a dancer create such
illusions? How do dancers use physical
principles of motion to their advantage,
rather than fight against them?

For example, no matter how much a
dancer may wish to leap off the floor and
then start turning (say for a tourjete—that
is, a turning leap), the law of conservation
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of angular momentum absolutely prevents
such a movement. Nevertheless, an under-
standing of the basic physical principles
underlying that movement allows the
dancer to create an effective illusion of
jumping into the air and then turning.

There is a legitimate fear that one may
sacrifice the aesthetic impact of dance by
trying to analyze the art form scientifical-
ly. A newspaper dance critic reporting1 on
a scientific study of pirouettes—full turns
of the body on the toe or ball of one foot—ti-
tled his article, "He Wants to Reduce Ballet
to a Science." (The scientist did not share
this obvious bias.)

The reduction of dance to a science
ignores the aesthetic dimension and the
essence of communication with an audi-
ence. As philosopher Suzanne Langer put
it:2

In watching a dance, you do not see
what is physically before you—people
running around or twisting their bo-
dies; what you see is a display of
interacting forces But these force-
s . . . are not the physical forces of the
dancer's muscles The forces we
seem to perceive most directly and
convincingly are created for our per-
ception; and they exist only for it.
There is also a feeling that science

doesn't really apply to aesthetic art forms.
Bart Cook, a member of the New York City
Ballet, told3 Dancemagazine, "It's that

vision of freedom you create when you're
defying physical law " And Lisa de
Ribere, a soloist with American Ballet
Theatre who has submitted her talents to
scientific scrutiny, says an understanding
of physical principles is useful to a dancer
in developing technique, but the last thing
she would want to think about when on
stage in front of an audience is controlling
her moment of inertia or maximizing her
angular momentum in a turn! Artistic
sensitivities must occupy a dancer's full
attention at such a time.

Because a focus exclusively on physical
analysis may detract from performance or
appreciation of dance as an art form, what
is the value of such analysis? Dancers,
dance teachers and people in the medical
profession are now recognizing that a
knowledge of anatomy allows dancers to
use their bodies most effectively and safely.
A knowledge of anatomical structure and
constraints on human body movement can
help maximize the individual's potential
and prevent the kinds of injuries that
interrupt many promising dance careers.
And understanding how the muscles work
in dance movement, what constraints are
imposed by muscles and bones, and how
much a dance student can expand the
range of motion permitted by these con-
straints, is clearly a valuable tool for a
dance teacher. Consider the grand batte-
ment devant—a large kick in the forward



Grand jet6 by Jennifer Davis of the
Pittsburgh Ballet Theatre. By changing the
position of her legs during flight, the dancer
can make her head and torso briefly follow
a horizontal trajectory, giving the illusion
that she is floating. See the diagram on
page 26. (Photographs in this article are
by Michael Friedlander.)

direction without bending the knee. The
structure of the hip may prevent the
dancer from doing this maneuver while
maintaining a complete turnout, that is,
while keeping the feet pointed away from
each other at 180°. The good teacher knows
and teaches the ideal positions and body
configurations, but recognizes the distinc-
tion between the ideal and the possible.
Teaching involves a balance between elicit-
ing the best possible technique from
dancers and recognizing human limits.

Physics and dance
However, analyzing the physics of dance

can contribute still more fundamentally to
the skill that a dancer uses in creating this
art. Although dancers cannot see them-
selves totally in physical terms—as mas-
sive bodies moving through space under
the influence of well-known forces and
obeying physical laws—neither can they
afford to ignore these aspects of movement.
According to Allegra Fuller Snyder, former
head of the UCLA dance department,

Dance is more than an art. It is one of
the most powerful tools for fusing the
split between the two functions of the
brain—the fusing of the logical with
the intuitive, the fusing of the analyti-
cal perceptions with the sensorial per-
ceptions, the fusing of holistic under-
standing with step-by-step thinking. It
is a discipline which within itself deals

with basic understanding of human
experience and conceptualization.
How is the role of physics in dance best

illustrated? Dance consists of both move-
ment and line or position; it has both
dynamic and static aspects. Most of the
applications of physics have to do with the
response of the body to the forces that lead
to movement. To which aspect is the
aesthetic quality attributable? The eye
sees both movement and instantaneous
position, but are they perceived simulta-
neously, or does the mind emphasize one or
the other at a particular time? This
question has always reminded me of Niels
Bohr's principle of complementarity—that
one can observe the wave-like properties
(movement) of an entity clearly if one
sacrifices observing at the same time the
particle-like aspects (position). Perhaps
motion and position are similarly comple-
mentary when they are seen by the eye and
mind.

One of the challenges in dealing with the
technical aspects of dance involves the use
of appropriate vocabulary and terminol-
ogy. How is a basis for communication
established between such disparate fields
as physics and dance? As physicists, we are
aware that physics is built on precise
definitions of pertinent terms. We intend
these definitions to be as objective as
possible so that they are universally us-
able, independent of the unique interpreta-

tions of individuals. Physicists may dis-
agree on interpretations of observations,
but we depend on an assumed agreement
concerning the definitions of the terms.

People dealing with dance use language
to form images in terms of dancers' individ-
ual senses of body and movement. A dance
teacher may use words that have objective
definitions, but unless students can trans-
late those words into images, the informa-
tion transfer is abstract and not useful.

Individual students, because of their
different ages and backgrounds, have dif-
ferent levels and kinds of understanding.
Dance teachers, who often deal with young
people lacking a sophisticated vocabulary,
create images by building on common
understandings of how it "feels" to perform
certain movements or maintain certain
body positions. In teaching a student to
perform a pirouette, the instructor may
say, "Feel as if your body is squeezed into a
drinking straw." This image communi-
cates the physical idea, "Maintain a com-
pact alignment around a vertical axis to
perform a controlled turn." Or, more
physical yet, "Minimize your moment of
inertia about a vertical axis to minimize
the torque and angular momentum needed
for a given rate of turn." The message is
the same; the student's background deter-
mines the frame of reference.

A dancer usually depends on three meth-
ods to learn or improve a particular move-
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Floating illusion. The dancer's center of mass follows a parabolic trajectory, but changes its p o s i t i o n ^ ^ b o ^ s t h e

dancer's legs or arms move. This allows the dancer's head briefly to move horizontally. (Diagram by Sandra Kopell.)

ment: trial-and-error adjustments in the
basic motions, the example of an exper-
ienced dancer executing the motion cor-
rectly, and the instructions of a teacher or
peer. The instructions are often based on
an intuitive feeling as to what makes the
movement "right." Although the validity
of these traditional methods of learning
has been well proven historically, im-
proved techniques for teaching dance are
now becoming available. A more analyti-
cal understanding of how a particular body
position or change in body configuration
contributes to the desired form can en-
hance these techniques for teaching dance.

We can extend the examples described
above, involving placement for a pirouette.
An instructor may tell a student to stretch
vertically, pushing into the floor with the
supporting foot while reaching for the
ceiling with the head. The student finds
that a strong and straight vertical body
makes the pirouettes more successful, and
that dancers with weak or flaccid backs
have trouble with pirouettes. Physical
analysis shows why these aspects of body
placement contribute to successful pir-
ouettes. If the body is properly "pulled up,"
the mass is compacted close to the axis of
rotation, decreasing the moment of inertia
and allowing for a substantial rate of turn.
Such placement is thus not only desirable
for aesthetic reasons, but also necessary to
achieve a reasonable turn rate.

Although difficult physical feats are
often accomplished by pure strength and
agility, it is often true that the appearance
of performing certain movements is illu-
sory, and the dancer uses a deeper skill to
create these illusions. The understanding
that comes from a physical analysis of
movement gives the dancer or teacher a
basis for developing techniques that create
or enhance the illusion of performing the
impossible.

It is also true that an observer watching
a dance performance can appreciate the
movement more deeply by understanding
both the limitations imposed by physical
law and the role of illusion. Dance move-

ment often inspires awe in the observer,
not only because of the beauty of the
moving human form, but also because the
dancer seems to defy the normal physical
constraints that nature imposes on moving
objects. An understanding of the appropri-
ate physical principles allows the spectator
to distinguish between possible and impos-
sible movements, and to appreciate the
subtle skill of a dancer who creates an
illusion of performing the impossible.

The physical principles pertinent to an
analysis of dance are, of course, Newton's
laws of motion, which form the basis of any
analysis of motions of massive, flexible
objects. Conservation of linear and angu-
lar momentum, and the relationship
between forces or torques and the resulting
changes in the state of motion, form the
basis of our analysis.

Dance movement can be broken down
into categories characterized by the tech-
niques required for analysis. Some move-
ments involve primarily vertical or hori-
zontal motions of the body as a whole, in
which we can ignore rotations. We can
study these motions using simple equations
of linear motion in three dimensions. This
analysis leads to a recognition and under-
standing of some interesting illusions and
techniques, such as the appearance of
floating horizontally in a grand jete—a
large jump in which the weight of the body
is thrown from one foot to the other.

Rotational motions require different ap-
proaches, involving the way the body's
mass is distributed, the different axes of
rotation for different types of movement,
and the sources of forces and torques that
produce the rotational motion. The sim-
plest rotational motions are pirouettes, but
there are other movements that involve
rotations. Entrechats, for example, involve
rotational motion about horizontal axes
through the hip. In this movement the
dancer leaps straight into the air and
crosses his or her feet a number of times,
making a scissoring motion in the air.
Tours jetes, in which the dancer jumps and
turns, involve rotations about skewed axes.

Physical analyses can explain the effects
of the size of dancers on the movements
they can perform. Most choreographers
and teachers recognize that small dancers
have different ways of moving than taller
ones, but what is the physical basis for the
differences? How can teachers avoid ex-
pecting the impossible of tall dancers, and
how can choreographers maximize the
effectiveness of their use of different sizes
of performers? Are there physical princi-
ples that make the slender, long-legged
"Balanchine" dancers particulary appro-
priate for Balanchine choreography? Is
there a way to choreograph specifically for
the talented but "undersized" dancers who
can outperform their taller counterparts in
particular movements and tempos? Phys-
ical analyses can answer many of these
questions.

Grand jete 'floating' illusion
Dancers can create an interesting illu-

sion by changing their body configuration
during flight. One sometimes sees an
impressive grand jete in which a dancer
seems to defy gravity by floating horizon-
tally near the peak of a jump rather than
following a parabolic trajectory. We know
that once the body loses contact with the
floor the center of gravity follows a trajec-
tory that is totally determined by the
conditions of motion at the beginning of the
trajectory. Although the dancer may
change the shape and configuration of the
body in flight—a maneuver that can pro-
duce certain illusions—the dancer can do
nothing to change the trajectory of the
center of gravity. The trajectory will
reflect a constant horizontal velocity and
the vertical motion associated with a
jump—a rising motion with decreasing
speed, a moment with no vertical motion,
followed by an accelerating downward
motion.

It is true that a jump made during
horizontal motion can be higher than a
simple vertical jump because the dancer
can transfer some of the horizontal mo-
mentum to vertical momentum. An ex-
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Anatomical data for a dancer

vrrx Leg x> Body segment

Trunk

Head
Thigh
Shank
Foot
Upper arm
Forearm
Hand

Men
Weight
(percent)

48.3
7.1

10.5
4.5
1.5
3.3
1.9
0.6

Length
(percent)

30.0

23.2
24.7

17.2
15.7

Women
Weight
(percent)

50.8
9.4

8.3
5.5
1.2
2.7
1.6
0.5

Length
(percent)

30.0

24.7
25.6

19.3
16.6

Weights and lengths are given as percentages of total body weights and heights, respectively.
The data are averages for six female college-aged gymnasts and 35 college-aged men. (From
Stanley Plagenhoef, reference 4.)

Arabesque turn analysis
To analyze the arabesque turn and the
problem of the oscillating leg, we assume
that the body consists of three main parts,
as shown in the diagram above. We will
ignore the contribution of the arms to the
moment of inertia, because they are so
light; and we will ignore the contribution of
the supporting leg, because its mass is
concentrated so close to the axis of rota-
tion, which we assume lies in a vertical line
along the edge of the cylindrical torso and
head. Assume the dancer is a female of
height 5 ft 3 in (1.60 m), weight 97 Ib (44
kg), with a torso of effective radius 12 cm.
Other body-segment lengths come from
the table above.

The total moment of inertia of a cylinder
rotating about an axis along an edge is

/b =%Mr2 = 0.66 kgm2

The moment of inertia of the gesture leg
making an angle 9 with the vertical is

/, = /0 sin20

The moment of inertia /0 of a horizontal leg
is 1.44 kgm2.

We can treat the effect of the centrifugal
force on the leg as a torque around a
horizontal axis through the hip, tending to
increase the angle 6. This torque is pro-
portional to the square of the angular
velocity <o, and is given numerically (after
an integration over the length of the leg
and with the assumed masses and
lengths) as

7", = (1.44 kg m2)^2 sin 0 cos 0

The torque tending to decrease the angle 9
(to lower the leg) is due to gravity acting on
the center of gravity of the leg, and is given
by

T2 = (25.5 kg m2/s2) sin 9

Thus the total torque on the leg tending to
increase its angle with the vertical is, in SI
units,

f = 1.44 to2 sin 0 cos 0 - 25.5 sin 0

We assume the angular momentum of
the rotating body is constant; that is, we
neglect accelerating or retarding torques

between the supporting foot and the floor.
What is this angular momentum? Let us
choose a rotation rate of 0.8 revolutions
per second, with the leg at the equilibrium
angle for that rotation rate, such that the
dancer is exerting no torque in the hip to
support the leg. (This is artificial: Most
dancers will exert a torque to help support
the leg. We will take that torque into
account later as a perturbing factor in the
simpler analysis.)

One can find the equilibrium angle by
setting the total torque in the above equa-
tion to zero and finding the angle 9 that
corresponds to the assumed value of the
angular velocity <u. The result is

9o = 45°

With that angle, the total moment of inertia
can be found from the first equation, and
the angular momentum is

Z. = 6.95 kgnrVs

If this angular momentum is a constant,
even when the angle 0 and the rotation
rate change, we can eliminate co from the
equation for total torque. The angular
velocity is given by

<y = Z.// = 6.95/(/b +/Osin2<9)

= 4.84/(0.46 + sin2 0)

Now we can construct an expression for
the torque, tending to change the leg angle
9 in terms of just one variable, 0. Because
the torque is the product of the moment of
inertia of the leg around the horizontal hip
axis and the angular acceleration a of the
leg around that axis, we have a final
expression,

1.44 a = 1.44
/ 4.84 V
\ 0.46 + sin2 0 )

X sin 9 cos 9 — 25.5 sin 0

This is a nontrivial differential equation,
which can be solved by assuming that the
angle 9 is ciose to 90. The numerical
solution for 0(t) shows a frequency of
oscillation of about 1.1 cycles per second.
This frequency is close enough to the turn
rate of 0.8 revolutions per second that, with

the significant uncertainties in the analysis,
the two may be equal, giving rise to a
"resonance" in which the leg undergoes
one up-down-up oscillation while the body
makes one complete turn. There is prob-
ably a mental reinforcement for an oscilla-
tion that involves a slowing of the body's
rotation each time the dancer is facing the
original direction. This reinforcement
would be particularly strong if the head is
spotting to that direction once each revolu-
tion also.

Now let us reconsider the cavalier as-
sumption about the lack of torque from the
hip. Suppose the hip exerts a constant
lifting torque such that the equilibrium an-
gle of the leg increases to 75° from the
vertical. The torque necessary to accom-
plish that more nearly horizontal ara-
besque position can be calculated, and
has a numerical value of

TH = 15.6 N m

The total constant angular momentum is
greater in this case, because the leg is
extended farther from the axis of rotation.
The relationsip between the angular accel-
eration of the leg around the hip joint and
the angle 0 must take into account the
additional hip torque. A solution of the
revised equation gives an oscillation fre-
quency of 0.9 cycles per second, a bit
slower than for oscillations around the
lower angle of 45°. In fact, this oscillation
frequency is even closer to the frequency
of rotation, implying an even closer cou-
pling between the rotation and the oscillat-
ing leg.

Again the result is important in that the
natural tendency to slow the turn, or pause,
after each revolution is enhanced by the
"drooping leg syndrome" in which first the
leg is high and the rotation slow; then the
leg descends, speeding the turn; and then
the leg rises again after about one revolu-
tion to slow the turn when the body again is
facing the original direction. The fact that
the movement is performed without the
culprit leg in sight of the dancer makes it
difficult to correct this fault, which has such
a negative effect on the aesthetic line of
the arabesque position during the turn.
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Losing and regaining balance

To analyze balance, imagine the body to
be a stick that is somewhat heavier at the
upper end than the lower. This stick can
balance vertically on the floor. If it is
displaced from the vertical by a small angle
0O, it will start toppling, and the angle 8 will
increase at an accelerating rate as indicat-
ed in the figure below.

The force of gravity acts on the center of

Direction of
upper-body

motion

Direction of tendency
of feet to move

•

Vertical

Initial angle d0

Angular
acceleration
from
vertical

Toppling rod

Force due to gravity

gravity, and thus exerts a torque around
the point of support whenever the stick is
displaced from the vertical. The equation
relating the angular acceleration away
from the vertical and the torque due to
gravity is

mgR0 sin 6 = la = mRg
 2 a

In this expression, m is the mass of the
body, g is the acceleration due to gravity,
/?c is the distance from the point of support
to the center of gravity, / is the moment of
inertia of the body toppling around an axis
through the point of support, Rg is the
radius of gyration [defined as V(l/m)], and
a is the toppling angular acceleration. If
the angle is small, we may replace sin 6 by
9 with very little error. The result is a
simple differential equation whose solu-
tion, taking into account the initial condi-
tion, is a hyperbolic cosine function:

0=0ocosh(^gRc/Rg
2t)

For a uniform stick of length 5 ft 10 in (1.78
m), the center of mass would be at the
midpoint, so Rc = 0.89 m; Rg would be
1.03 m. Assuming the body is more mas-
sive at the upper end, let us increase each
of these quantities arbitrarily by 15%.
Thus Rc = 1.02 m and Rg - 1.18 m. The
coefficient of the time t in the above
equation is then

Note that this coefficient is greater for a
small person, so that the acceleration
away from vertical is, as one would expect,
more rapid than for a larger person.

The table below shows the angle of
displacement from the vertical as it varies
with time for a few initial angles of displace-
ment for a 5 ft 10 in dancer and for a
dancer 15% shorter Gust under 5 ft).

Regaining balance. Can a dancer do
something to correct an unbalanced condi-
tion? One might think not, for the only
source of horizontal force is at the support-
ing point itself. However, one sees
dancers squirm and wiggle in attempts to
regain balance. One can, in fact, move
one's body so as to exert a horizontal force
against the floor and regain balance under
the influence of the reaction force from the
floor.

Although dancers may intuitively realize
that it is possible to regain balance while
supported on one foot, they may fail to
recognize that it is not the manipulations of
the body directly that restore balance, but

the horizontal force exerted on the floor
that accomplishes the shift in position of
the center of gravity. That is, movements
of the body that maximize the horizontal
force of the supporting foot against the
floor will be most effective in restoring (or
destroying) balance.

What types of body manipulations are
effective in restoring balance? If you have
ever walked along a rail of a railroad track,
you have observed a very important in-
stinct at work. If you start falling to your
right, your upper body will suddenly bend
toward the right, as indicated in the figure
at the left. Some have claimed that this
reaction is counterproductive, and have
admonished dancers to overcome the in-
stinct and merely move back toward ba-
lance (to the left in this example). How-
ever, recall that what one needs is a
means of exerting a horizontal force on the
rail directed toward the right, so that the rail
will exert a force to the left that will
translate into a force to the left on the
center of gravity, moving it back toward
balance.

The upper body suddenly moving to the
right causes the feet to exert a force to the
right on the rail or floor. This is particularly
clear in the extreme case of a "jack-
knifing" motion to the right. If that move-
ment were performed on ice, the feet
would slip to the right. The rail exerts a
friction force to the left preventing that
slipping, thereby pushing the body back to
the left. So our instincts are indeed
correct.

A dancer, of course, must make these
movements very small and subtle to avoid
destroying the illusion of motionless ba-
lance, and to avoid sudden jerking of the
body that could be injurious. To be able to
correct by very subtle movements, the
body must be acutely sensitive to very
small departures from balance. Clearly a
rigid upper body will prevent the sensing of
small changes in position and make it
difficult to apply small correcting manipula-
tions. On the other hand, an unrigid sup-
porting leg, hip and lower body will prevent
those subtle manipulations from being ef-
fective in balancing on a strong support.
Hence, part of the accepted technique for
maintaining balance involves keeping the
lower body rigid while keeping the upper
body relaxed and sensitive to small depar-
tures from balance, without losing the
quality of line. This technique is not only
aesthetically and conventionally "correct,"
but also it makes sense in terms of the
physical principles of balance.

Toppling from

Height

5 ft 10 in

5 ft

Time

(seconds)

1
1V!>

2
V2
1

1V2
2

Initial

0.5°
1.0°
3.7°

14°
55°
1.0°
4.6°

20°
>60°

displacement

1°
2.1°
7.5°

29°
>60°

2.3°
9.1°

39°
>60°

2°
4.1

15°
57°

>60°
4.5

18°
>60°
>60°

angle

4°
8.2°

30°
>60°
>60°

9.0°
36°

>60°
>60°

the vertical f°rta» ^ ^ p u -
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treme case of this transfer is a pole vaulter
who uses the flexible fiberglass pole to
maximize the transfer of horizontal mo-
mentum to vertical.

The illusion seen in the grand jete is
partly due to the simple fact that the
vertical motion of the body is rapid at the
beginning and end of the jump, but slow
near the peak as the vertical speed slows to
zero and reverses for descent. In fact, half
of the total time the body is in the air is
spent at more than three-quarters of the
height of the peak. For example, if the
center of gravity rises two feet during the
grand jete, the total time in the air is about
0.7 second, half of which, or 0.35 second, is
spent within six inches of the peak. The
dancer can manipulate the body in such a
way that the appearance of floating is even
stronger.

Although the dancer's center of gravity
follows a curved trajectory determined by
the conditions of the initial jump from the
floor, the dancer can move the position of
the center of gravity relative to the body.
Suppose, as in the figure above, the center
of gravity when the dancer first leaps is in
the abdominal area, when the legs and
arms are rather low. If when the center of
gravity has risen part way through its
parabolic trajectory the arms and legs are
raised, the center of gravity will move up in
the body, perhaps to the stomach or above.
If the timing is right, the dancer's torso and
head will actually move horizontally while
the center of gravity moves near the peak
of its curved trajectory. Because the eye of
the observer is likely to follow the per-
former's head and torso, the dancer creates
the illusion of floating horizontally for a
few brief moments! A necessary compo-
nent of body motion to accomplish this
illusion, then, is the raising of the legs,
ideally to a "split," at the peak of the leap.
The dancer must time the split to coincide
with the peak of the curved path of the
body's center of gravity to produce the
smoothest appearance of horizontal mo-
tion. Such a split is often part of an
impressive grand jete (see the photographs
on pages 24-25), but it is now seen not only
as an added flair unrelated to the jump
itself, but as a component of the motion
contributing directly to this illusion of
"floating."

Arabesque turn
An arabesque turn in classical ballet is a

beautiful movement when performed well.
In this movement, the dancer turns while
standing on one leg, with the other leg fully
extended to the rear. There is a common
error that one can observe in students
learning the movement, and there is an
interesting physical reason behind the
prevalence of this error.

The arabesque turn is usually an "en
dedans" turn, rotating toward the support-
ing leg. It requires the dancer to exert
torque with both feet on the floor, and then
to lift the push-off leg into a horizontal
position to the rear, where it is not visible

Balance. Dancers make subtle movements to maintain balance;
these are analyzed on page 28. This photo is from last fall's
performance of Swan Lake by the Pittsburgh Ballet Theatre.

to the dancer. After the leg reaches the
horizontal position, there is a strong ten-
dency for it to drop lower, as in a grand
battement derriere, or kicking movement to
the rear. When the leg is fully extended
horizontally, it represents a large contribu-
tion to the total moment of inertia of the
body, which makes the angular velocity
small for the magnitude of angular mo-
mentum that resulted from the initial
torque. When the leg drops, it moves closer
to the axis of rotation, decreasing the
moment of inertia. This reduced moment
of inertia increases the angular velocity,
making the turn seem easier, faster and
more satisfying. Because the drooping leg
is behind the body, the dancer does not see
it easily, except in a mirror.

An interesting phenomenon now occurs.
Because the angular velocity has in-
creased, there is an increased centrifugal
force away from the axis of rotation tend-
ing to throw the leg out toward the
horizontal again! (It is reasonable to deal
with "centrifugal force" here because the
dancer is dealing with perceived forces in
the rotating frame of reference.) So a
dancer may experience an oscillation of the
leg up to the horizontal, down, then up
again, possibly repeated for a multiple
arabesque turn. In fact, one can observe
such an oscillation in students who do not
concentrate on keeping the leg fixed in the
arabesque position through proprioceptive
senses—the internal senses that the mind
uses to determine body positions without
visual cues. One may ask if this oscillating-
leg syndrome is indeed bad; perhaps the

choreographer intends such a movement!
But the traditional arabesque turn in
ballet, which is a common and impressive
movement, is done ideally with the gesture
leg fixed in a horizontal position.

At what frequency might the gesture leg
oscillate up and down? The problem is not
a simple one, because the centrifugal effect
tending to throw the leg out depends on the
angular velocity of the turning body; that
angular velocity, however, depends on the
angle the gesture leg makes with the
vertical.

An analysis of the problem is presented
on page 27. The analysis involves a num-
ber of assumptions, beginning with the leg
modeled as a cylinder of one thickness for
the thigh and a smaller thickness for the
lower leg. The entire leg is free to oscillate
in a vertical plane from the hip, with the
pivot lying on a vertical line above the
point of support (the foot of the vertical
supporting leg). As shown in the box, the
moment of inertia of the gesture leg is a
function of the angle the leg makes with
the vertical. This moment of inertia deter-
mines the instantaneous angular velocity,
which in turn determines the centrifugal
force, and this, in combination with the
effect of gravity on the gesture leg, helps
determine the angle the gesture leg makes
with the vertical. To make the resulting
equations solvable, I assume that the total
angular momentum is such that the leg's
equilibrium angle is 45°, and that the
oscillations around that angle are small.
For a leg of typical length, the result is an
equation that relates the oscillation fre-
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quency of the leg to the rotation frequency.
For a body size and weight typical of

dancers, and an angular velocity typical of
an arabesque turn, the calculation gives an
interesting result. The leg's oscillation
frequency is equal to the rotation frequen-
cy when the dancer takes about two se-
conds to complete a full turn. This reso-
nance between the two frequencies may
make it particularly difficult to overcome
the oscillating-leg problem, because the
natural frequency of that oscillation makes
the leg "bounce" just once each revolution.
The good arabesque position would occur
when the body is facing one direction, then
occur again when the body returns to that
orientation. In between, the leg is lower
and the dancer rotates more rapidly.

Future contributions
Physics has been around for centuries,

and dance for as long as human beings have
tried to interpret their experience through
movement. Because physics deals with the
properties and causes of movement, why
have the two areas not contributed to each
other more fruitfully? For what reasons
might we see a change in this situation on
the horizon?

The application of biomechanics to
sports is a lively and accepted field. Why
has dance not progressed in a parallel way?
One answer lies in the fact that quality of
performance in sports is quantifiable,
while in dance the judgment of quality
depends on aesthetic interpretation. What
we are now finding, however, is that a lack
of understanding of applicable physical
principles imposes constraints and limita-
tions on dancers in much the same way
that it limits athletes. A dancer who can
use such understanding to attain extra
height from a jump, a sharper turn in a
tourjete, or a smoother landing from a tour
en Vair has more tools to work with, and
more flexibility with which to achieve
aesthetic goals.

As the scientific study of dance expands,
it can take different directions. Increasing
numbers of researchers are studying parti-
cular movements in detail, using modern
technical tools such as high-speed cinema-
tography and computer analysis. This is
certainly a useful direction, and such
studies will form a foundation on which
teachers, dancers and other researchers
can build a better understanding of dance,
both for the sake of pure understanding
and for the improvement of dance tech-
nique. These studies, however, must be
complemented by physical analysis, which
gives an overview of movement in dance.
Such an overview should include qualita-
tive analyses of many different move-
ments, with the emphasis on understand-
ing which basic physical principles apply,
how the body takes advantage of these
physical laws and what connections exist
between different movements in dance and
in other types of human body movement.
We must not lose the "forest" of a broad
physical context as we investigate the

Arabesque en pointe. In this set pose, the dancer
stands on one leg, with the other leg fully extended to the rear.

(Pittsburgh Ballet Theatre photograph.)

"trees" of individual movements.
The time is ripe for expanding our

involvement with dance analysis. Dancers,
particularly ballet dancers, have tradition-
ally begun their training at too young an
age to grasp abstract physical principles
and apply them to human body movement.
By the time they have developed their
analytical capacities, dancers have come to
think of their work as an activity learned
and motivated more by instinct, feeling and
the copying of models than by questioning
and analysis. However, children are now
growing up in a world that more readily
accepts analytical approaches to a variety
of human endeavors, from economics to
politics, from literature to music. People
are rapidly discovering the immense poten-
tial of computers and other technical tools
for contributing to our knowledge in a wide
variety of fields. Children are increasingly
exposed to analytical ways of thinking.
Some will reject these approaches as being,
at best, a necessary evil for "others" to cope
with, and some will accept and use these
approaches comfortably. In this increasing
dichotomy, will many dancers see the
benefit of an analytical approach to cre-
ative and aesthetic arts?

Dance teachers will increasingly find
that an analytical understanding can com-
plement existing techniques rather than
replace them. Some students will respond
well to this approach, and some will not.
But teachers will have additional tools at
their disposal with which to help students
learn dance.

The danger that dance will become too
analytical, and that the emphasis will shift
toward athletic accomplishment rather
than aesthetic quality, has been with us as
long as there have been observers of dance
who are not sensitive to its artistic dimen-
sions. But the traditions of dance have
always been strong enough to withstand
this danger. There are also those who are
uncomfortable with the new approaches

and are threatened by them. Perhaps
these people will become convinced as they
see examples where the scientific approach
is useful and not damaging. It is the
responsibility of the scientists involved in
this work to bring their ideas constantly to
earth, and to maintain the connection of
these ideas to the world of real flesh-and-
blood dancers.

Where can people go who are interested
in learning more about physical analyses of
dance movement? Much of the literature
in this area now is oriented toward a pure
understanding, rather than toward appli-
cations to improvement of technique. As
more people become involved, particularly
those who have experience in the teaching
of dance, these analyses will be brought
into the traditions of dance instruction. An
increasing number of workshops, confer-
ences and publications will be dealing with
these analyses. The Kinesiology for Dance
newsletter, for example, is an informal
publication with an expanding coverage
and circulation. (Readers may contact the
author for information about this publica-
tion.)

We can look forward with great anticipa-
tion to the progress in the art of dance that
can result from a marrying of the technical
and the aesthetic, the rational and the
emotional—the mind and the body.
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