letters

Noncrystalline semiconductors

Hellmut Fritzsche has performed a useful service in reviewing much of the recent scientific literature on noncrystalline (particularly amorphous) semiconductors (October, page 34). His treatment of the historical background of this field, however, unfortunately omits some significant references and contains some dubious ascriptions.

His reference to "the inventive drive that utilizes the unique properties of amorphous semiconductors and that gave this field its original momentum" is to Stanford R. Ovshinsky, in Physical Review Letters 21, 1450 (1968). While the publication of this letter provoked a large increase in research activity in the field and helped bring it into the mainstream of solid-state physics, it is also true that, by 1968, two multibillion-dollar industries had already profited for some 20 years from the introduction of amorphous photoconductors into the field of office copiers1 (1948) and television camera tubes2 (1951).

The 1968 paper by Ovshinsky describes an electrical switch using amorphous materials. It was described in the New York Times as comparable in importance with the transistor. Nevertheless, its commercial impact at the time was minimal and now appears to have practically disappeared. The commercial impact of the amorphous photoconductors in office copiers and television camera tubes, on the other hand, has been outstanding and continues, even after almost 40 years, to increase.

Perhaps the most unfortunate omission in the paper by Fritzsche is any mention of the first demonstration of a solar cell (1976), by David E. Carlson and Christopher R. Wronski using hydrogenated amorphous silicon.³ This paper initiated a worldwide effort on the science and technology of amorphous silicon. Carlson's and Wronski's contribution was recognized in 1984 by the IEEE with the award of the prestigious Morris Liebmann Prize. Fritzsche himself, on an earlier occasion, paid tribute⁴ to this work.

In brief, Fritzsche's treatment of the historical aspects of amorphous materials in the PHYSICS TODAY article is not in

keeping with his knowledge and standing in the field.

References

- R. M. Schaffert, C. D. Oughton, J. Opt. Soc. Am. 38, 991 (1948).
- Series of papers by P. K. Weimers, S. V. Forgue, A. D. Cope, R. D. Goodrich, in the September 1951 issue of RCA Review.
- D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 28, 11 (1976).
- H. Fritzsche, J. Non-Crystalline Solids 59, 60, 1289 (1983).

ALBERT ROSE, consultant 10/84 (formerly RCA Laboratories)
THE AUTHOR COMMENTS: I am grateful to Albert Rose for giving me the opportunity to point out the tremendous impact that the first amorphous silicon solar cell of David E. Carlson and Christopher R. Wronski had on our field. I do not know how it is possible that I omitted mentioning this important milestone in my article on noncrystalline semiconductors. I very much regret this mistake and apologize.

With regard to the use of noncrystalline semiconductors in xerographic office copiers and television camera tubes, I have often wondered why some materials applications strongly stimulate materials research while others do not. The reversible and very fast switching effect described by Stanford R. Ovshinsky in his Physical Review Letter made a strong impression on many of my colleagues, and on me, because we realized how little we knew about this huge class of materials of which these noncrystalline semiconductors are only a part. It changed the direction of our research because of its intellectual challenge and not because of its commercial utility.

HELLMUT FRITZSCHE
James Franck Institute
12/84 University of Chicago

Superpolymers

The excellent article on superpolymers and colloidal aggregates by Tom C. Lubensky and Philip A. Pincus in a recent issue of physics today (October, page 44) draws attention to a growing area of research¹ on supramolecular

BNC pulse generators offer shaping, rate, and amplitude features *rarely* found elsewhere. Find out the whole story by requesting your free copy of BNC's Catalog 83/84. NIM Power Supplies also included.

Berkeley Nucleonics Corp.

1198 Tenth Street Berkeley, CA 94710 Telephone (415) 527-1121

Circle number 10 on Reader Service Card

YOUR SINGLE SOURCE

for Multi-Component Technical Ceramic Powders.

Trans-Tech is your best single source supplier.

As a high technology supplier of quality ceramic powders, Trans-Tech combines the advantages of custom development with superior process control techniques to satisfy the most demanding research and production requirements. This combination covers a wide range of needs for specialized techniques including flowable, fully reacted powders for thermal spraying...controlled density targets for film deposition...and fine particles for processing of composites, among others. Some specific applications include thermal barrier and corrosion resistant coatings, semiconducting and dielectric composites, oxide catalysts, and microwave absorbers.

Backed by over 30 years of experience as a leading producer of complex ceramic materials for the microwave industry, Trans-Tech enjoys an established reputation as a synthesizer of custom powders that yield the highest levels of purity. This capability is reflected in a number of significant operating advantages that include...

• The ability to control average particle size and distribution, as well as particle morphology.

 The use of alternative processing methods to maintain consistency and repeatability.

• The maintenance of guaranteed homogeneity at molecular levels.

Furthermore, as the leading domestic producer, Trans-Tech offers the additional flexibility of *direct applications assistance* as well as the ability to deal in both *large* and small quantities, to assure deliveries that will meet your schedules.

So put the experience of a leader to work for you, when it comes to meeting your most pressing development needs. Get to know the name Trans-Tech...it's your best assurance of uncompromising quality in the field of Multi-Component Technical Ceramic Powders. Call or write today for more information.

Trans-Tech, Inc.

A subsidiary of Alpha Industries, Inc. • 5520 Adamstown Road, Adamstown, MD 21710 • Phone: (301) 695-9400 • Twx: 710-854-8418 • Telex: 89-3456

systems in which physicists have an important role to play. As methods to produce well-controlled colloidal crystals are developed² and instrumental techniques to study their behavior under nonequilibrium conditions are refined,3 the study of the static and dynamic structures of such supramolecular assemblies offers additional opportunities to understand many-body interactions. The possibilities of translating these to interactions in molecular systems are also promising.

I hope that PHYSICS TODAY will continue to highlight these and related areas of physics, such as the series of articles on fluids out of equilibrium,4 in its future issues. In this context, your readers may also be interested in a forthcoming symposium⁵ on the statistical mechanics of micellar and microemulsion systems, scheduled for the spring 1985 meeting of the American Chemical Society.

References

10/84

- 1. C. S. Hirtzel, R. Rajagopalan, Research and Research Needs in Colloidal Interactions, NSF/OIR-83005, Office of Interdisciplinary Research, NSF (1983); A corrected and slightly revised version of this will be released by Noyes Publications under the title Colloidal Phenomena: Advanced Topics, in early 1985.
- 2. S. Hachisu, S. Yoshimura, Nature 283, 188 (1980).
- 3. B. J. Ackerson, N. A. Clark, Physica, 118A, 221 (1983).
- 4. PHYSICS TODAY, 37 (1), 25 (1984).
- 5. Symposium on Statistical Thermodynamics of Micellar and Micro-emulsion Systems, ACS, Miami Beach, 29 April-1 May 1985; Organizer: S. H. Chen, Nuclear Engineering, MIT

RAJ RAJAGOPALAN Renssalaer Polytechnic Institute Troy, New York

Why is there an arms race?

Your July editorial (page 128) was correct in that physicists can contribute to greater understanding of the arms-control problem. But, while the technical aspects are important, understanding the political and emotional forces involved is more important, and these influences should not be obscured by physics problems. Why is there an arms race?

All policies are mixtures of both rational and irrational decisions, foolishness and (in some cases) wisdom; but they are often more irrational, more foolish and more unconscious than they are rational, wise and conscious. There are many examples of the irrationalities that spur the arms race:

Early man probably relied on those

close to him (who also carried his genes) for protection and support while others posed a danger. The need to belong, to be in a group, is basic. But for ingroups to exist, there must be outgroups. People need outsiders, aliens, unaccepted "others." Does anyone doubt that if Earth were invaded, the US and USSR would drop their rivalry to fight the invaders? We would become parts of the same in-group, for there would be outsiders to define it. ▶ People need friends, but they also need enemies-people to love and people to hate. The history of the US (or any other great state) is, in part rationally, a kaleidoscope of friends and foes. Yesterday's bitter enemy is today's close friend. The identity changes, but one thing is constant: the existence of enemies. They fill a basic human need. Emotions, strong emotions, are re-

warding. Humans crave excitement. Which is more exciting, war or peace? Huge machines (toys) or education? The new or the old? Fighting or negotiating? Action or thought? Victory or compromise? Intricacy or sim-

plicity?

▶ We react not to things but to what they represent as symbols. Why do people lose their temper if the flag is damaged? It is only a piece of cloth. But symbols have emotional content in that they summarize and substitute for things otherwise too large or too abstract for us to comprehend. So we fight for these symbols, even at the expense of that which they represent.

▶ Arms have emotional content—they are not only useful, but enjoyable. And they are symbols for values of great emotional content: power, pleasure, pride, patriotism, toughness, self-righteousness, moral superiority, emotional security, stability, glory, excitement. They are a form of group identification and wish fulfillment and an escape from both subtlety and complexity.

▶ It is common for people to develop methods to reach goals and then become so involved with these means that they not only lose sight of the end but also become so obsessed that they are happy to accept an outcome that is the complete opposite of their original goal (the means justifies the end). What is more important: national security or lots of enjoyable weapons—even if they threaten national security?

► A major reason for the current arms buildup was the Iranian hostage situation. However, more weapons would not have helped there, and the arms now being acquired are aimed not at Iran but the Soviet Union. An analysis of this explains much about arms races.

Logically arms should be obtained for use (even if only as a deterrent) the way money should be obtained to buy things. But money is often acquired

FEATURES

- Two Phase Operation
- 50 μs Time Constant Option
- Vector/Phase Measurement
- 2000 × F.S. Dynamic Reserve

If you need High Frequency phase sensitive detection, call or write today.

P.O. BOX 2565 • PRINCETON, NJ 08540 609/452-2111 • TELEX: 843409

See us February 25-28 1985 at Pittcon in New Orleans I A Booth #1846 Circle No. 14 for information Circle No. 15 for salesman