
Thermodynamics in finite time
Asking how well systems can perform if they are to deliver power, not just energy,
leads to investigations both in abstract, fundamental thermodynamics and in almost-
applicable physics, such as determining the optimal motion of a piston.
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Until the 19th century, technology was
essentially the domain of skilled arti-
sans and constructors who relied on
practical experience to design and
build their machines. One of the first
efforts to use physical theory to study
the functioning of machines was under-
taken by the French engineer Sadi
Carnot. Motivated by the concern of the
French about the superiority of British
steam engines, he undertook a syste-
matic study of the physical processes
governing steam engines, resulting in
his remarkable paper Reflexions sur la
puissance motrice du feu (On the Mo-
tive Power of Heat) published in 1826.
Among the earliest successes of this
new science, thermodynamics, was the
formulation of criteria describing how
well real processes perform in compari-
son with an ideal model. Carnot
showed that any engine, using heat
from a hot reservoir at temperature Th
to do work, has to transfer some heat to
a reservoir at lower temperature Ty,
and that no engine could convert into
work more of the heat taken in at Th
than the fraction

r?c=l-(Tl/Th)

known as the Carnot efficiency.
Other criteria for the performance of

heat engines emerged with the intro-
duction of the concepts of energy con-
servation and of thermodynamic poten-
tials: Hermann von Helmholtz's defini-
tion of a free energy H, Josiah W.
Gibbs's concept of "available work" or
availability A, the Gibbs free energy G,
the effectiveness e (the ratio of the
actual work supplied by a work source
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to the change in availability of the
system), and others. All these criteria
have long been common currency for
thermodynamic studies in physics,
chemistry, and engineering. They all
share one characteristic: The ideal to
which any real process is compared is a
reversible process.

Our research in thermodynamics
was stimulated by the challenge to
reduce the use of energy in heat en-
gines. In this context, we can question
the usefulness of comparing real pro-
cesses to reversible processes—which,
after all, take an infinite time to
complete. For example, are we inter-
ested in a factory that makes auto-
mobiles infinitely slowly? The basic
question is: Are reversible limits close
enough to real performances to be
useful in guiding the improvement of
processes? This question leads almost
immediately to the consideration
whether it is possible to find more
realistic limits to the performance of
real processes. Can we find bounds for
how well those processes can operate in
finite time? Can we use such bounds to
find better criteria of merit useful in
evaluating real processes? In general
terms, finite-time thermodynamics is
concerned with how constraints on
time or rate affect performance. (See
figure 1.)

The question of how well a system
can perform in finite time has led to a
wide spectrum of new scientific inquir-
ies, ranging from existence theorems
and basic problems, such as finding
limits on entropy production and defin-
ing adequate models for real systems,
to some challenging questions in al-
most-applicable physics, for example
determining the optimal time path of
the piston in an idealized automobile
engine, or designing new kinds of
engines based on dissipative processes.
Let us briefly consider the latter two

problems as examples of practical ap-
plications of our approach.

Engine design
As a model for the Otto cycle1 we

chose an engine with friction and a
finite heat leak proportional to the
exposed cylinder area. The engine
operates at constant period and con-
stant fuel consumption per cycle. We
optimized the time path of the piston to
yield the maximum work per cycle,
keeping constant engine parameters
such as the friction constant, the heat
leak coefficient, and the period. We
considered a four-stroke cycle of intake,
compression, power, and exhaust
strokes. The intake, compression, and
exhaust strokes have minimum losses
when they are run at constant velocity
for as long as possible, preceded and
followed by acceleration (or decelera-
tion) at the maximum possible rate to
reach the optimum constant velocity.

The most interesting part of the cycle
is the power stroke. In real automobile
engines, heat leakage, especially dur-
ing the hottest portion of the power
stroke, is the most important source of
inefficiency. Consequently, in the opti-
mum path, the piston has to accelerate
as fast as possible to a high expansion
velocity during the power stroke. If the
acceleration could be infinite, the opti-
mum velocity at the beginning of the
power stroke would be about twice the
maximum velocity of the piston in a
corresponding conventional engine.
The velocity of the optimized power
stroke then decreases with time (or
piston position), quickly becoming lin-
ear with piston displacement. Figure 2
shows the velocity and position of the
piston for an optimized and a conven-
tional cycle. The optimized cycle has a
maximum acceleration of 5x10" m/
sec2, about ten times that of the piston
in a corresponding conventional en-

62 PHYSICS TODAY / SEPTEMBER 1984 0031-9228/64/0900 62-09/$01.00 © 1984 American Institute of Physics



The cost of speed. A weight is lifted by
letting falling water turn a paddle wheel. With

an infinite amount of time available, the
machine can operate reversibly with no
losses and maximum efficiency: All the

available energy can be converted into work.
However, if there is only a finite time

available, losses are unavoidable and the
machine operates irreversibly. As the
operation becomes faster the losses

increase; at some finite speed the machine
operates at maximum power, but with an

efficiency less than the thermodynamic
maximum. Figure 1

gine.
For a range of engine parameters,

the net work delivered to the piston
and its work reservoir is between 8 and
15% greater than that in a convention-
al engine, equipped with the well-
known connecting rod-crank-flywheel
linkage that moves the piston in a
nearly sinusoidal path in time.
Whether it is worthwhile to build
engines with pistons that follow ap-
proximately optimized trajectories is
still an open question.

Our second example is a new kind of
engine based on dissipative processes.
Recently John Wheatley and his co-
workers2 have conducted a set of ex-
periments on an intrinsically irrevers-
ible acoustic heat engine that trans-
forms a temperature gradient along a
tube into acoustical energy, or vice
versa. This engine exemplifies the
class of systems that do not have a
reversible limit in that they deliver
zero work per cycle in that limit. In its
most basic form, the heat pump con-
sists of a thin tube, closed at one end,
and containing a piston in the other.
When the piston is moved back and
forth at a suitable rate, the gas heats
adiabatically during compression,
while being moved toward the closed
end of the tube, delivering heat to the
walls of the tube. During expansion
the gas cools, but is moved farther away
from the closed end of the tube. The
net effect is the transport of heat from
the open end to the closed end of the
tube. Thermal equilibration of the gas
with the walls is of course irreversible.
However, if one tries to remove this
irreversibility by operating the device
slowly, the temperature difference
between the gas and the wall is reduced
and the heat transfer reaches zero
because the gas will equilibrate with
the wall during compression. Such
systems are intrinsically irreversible:
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Optimized Otto cycle. The piston in an internal combustion moves in
a sinusoidal path, as determined by the crankshaft (color). However,
one could increase the engine's efficiency up to 15% by extracting
work rapidly before the hot combustion gases lose heat to the cylinder
walls and by keeping the piston speed as constant as possible to
reduce frictional losses (black curve). Figure 2

Endoreversible engine. In this simple
model of an irreversible engine all the losses
are associated with the transfer of heat to
and from the engine; there are no internal
losses within the engine itself. Because of
the finite conductivity of the heat-transfer
material the engine operates not between TH

and TL but between Tn and T,; the
temperatures Th and 7; depend on the rate
of heat flow, and thus on the power output of
the machine. The efficiency of the engine
thus depends on its power output. Figure 3

Hot reservoir

Thermal resistance

-Work

Thermal resistance

TL
Cold reservoir

They do not have reversible counter-
parts. In the acoustic engine the irre-
versibility itself provides the necessary
phase difference between the gas mo-
tion and temperature change. An elec-
tronic analog is the RC oscillator where
a dissipative resistor replaces the loss-
less self-inductance in an LC oscillator.

In the remainder of this article, we
emphasize the general ideas and phys-
ical principles of thermodynamics with
constraints on finite-time operation; we
conclude with a brief glimpse of a few
more applications of the approach:
determination of the maximum power
obtainable from endoreversible engines
(that is, engines for which the only
irreversibilities are located in the cou-
pling of the engine to its surroundings),
from engines with time-dependent en-
ergy sources; and from engines using
finite heat reservoirs. Other applica-
tions are the optimization of the time
paths to maximize the mean power
delivered by an Otto cycle engine (de-
scribed above) and by an external
combustion engine; the maximization
of efficiency and of power in a system in
which an exothermic chemical reaction

supplies energy to drive a second reac-
tion; and finally, the theory of an
engine driven by light absorption,
whose irreversibilities are, like those of
the thermoacoustic engine described
above, inherent to the operation of the
engine. For each system, work per
cycle becomes zero for infinite cycle
periods, in contrast to the systems that
are capable of producing work even
when they are operated reversibly.3

Formulation of the theory
We can clarify the role of time and

rate constraints in thermodynamics by
asking a sequence of questions:
• What are the necessary and suffi-
cient conditions for the existence of
quantities—extensions of conventional
thermodynamic potentials—whose
changes give the extremal values of the
process quantities of heat or work that
may be exchanged during a process,
when the constraints on that process
include constraints on the rate or
duration of the process? Naturally,
these generalized thermodynamic po-
tentials should be functions of conven-
tional thermodynamic variables of

state. They necessarily depend on the
constitutive parameters and the rate or
duration, but they also depend on one
or more time-response parameters of
the system. After all, if we are going to
squeeze more physics out of the prob-
lem, we have to expect to put more
physics into it.
• Given the conditions for the exis-
tence of generalized thermodynamic
potentials for finite-time processes, are
there algorithms for evaluating them
or their changes? When we do evaluate
them, what do we learn about the price
we pay for operating processes faster or
slower?
• Can we find the idealized but finite-
timepathways that will yield the extre-
mal work or heat exchange given by
the appropriate generalized potential,
and how can we use these results to
improve real processes?
• What are the operational differences
among processes of the same kind but
running so as to optimize different
quantities?

It is useful to point out a major
difference in viewpoint between work
understood as finite-time thermody-
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Optimizing an endoreversible engine. The engine of figure 3 spends
time T, in contact with TH and r2 in contact with 7~L; the time taken to
perform work and go through the remainder of its cycle is immaterial,

as those operations are reversible. The best choice of parameters
depends on what one choses to maximize. Depending on the prices

involved, the line for maximizing revenue can fall anywhere within the
colored band. Figure 4

namics and the established body of
research called "irreversible thermody-
namics." Both deal with the extension
of traditional equilibrium thermody-
namics to systems with irreversibili-
ties, and both are concerned with how
those irreversibilities affect the behav-
ior of processes. However, irreversible
thermodynamics addresses a question
different from that of finite-time ther-
modynamics: What are the equations
of motion of the thermodynamic state
variables of a system, and how can we
solve them? Finite-time thermody-
namics begins with the four questions
formulated above, which may be sum-
marized as: How do constraints on
time or rate affect the net process
variables—and therefore the perfor-
mance—of a process? The focus of
irreversible thermodynamics on equa-
tions of motion leads naturally to a
formulation in terms of differential
equations and to examination of the
local, differential behavior of systems.
The focus of finite-time thermodynam-
ics on the net changes of process
variables leads to variational princi-
ples and global descriptions of systems.
There are of course many points of
contact between the two approaches,
but as yet only the simplest, most
superficial relationships between the
two have been explored. As some of the
later examples will show, the viewpoint
of finite-time thermodynamics some-
times makes it easier to address ques-
tions generally. For example, the glo-
bal view may help to expose the extent
to which assumptions of linear behav-
ior limit the applicability of an analy-
sis; the global view may even lead to
more general approaches.4

The approach of finite-time thermo-
dynamics also differs in two ways from
that of the practicing engineer. The
engineer optimizes a model that is as
detailed a representation as possible—
typically an elaborate and specific sim-
ulation—of the particular system he
wants to build or use. Our approach, by
contrast, aims to isolate how the domi-
nant temporal characteristics of each
broad class of processes set limits on
the performance of that class. Second-
ly, the engineer typically optimizes the
values of key parameters of the appara-
tus, whereas finite-time thermodynam-
ic optimizations, at their most elabo-
rate, find the temporal path that maxi-
mizes the performance of a process.

The construction of generic models to
represent broad classes of processes is
central to finite-time thermodynamics.

Minimum entropy
production

Maximum revenue

Maximum efficiency

Maximum power

Positive power

Negative power Zero power

Each generic model should contain all
the important qualities of the type of
real system studied, but not the individ-
ual details which would obscure the
physical content and make calculations
very difficult or impossible. We are
already used to such models in tradi-
tional thermodynamics: the Carnot
engine is, for example, the highly
idealized reversible representation of
all heat engines. Finite-time thermo-
dynamics retains the same philosophy
of model construction, but makes the
models somewhat more realistic. The
first "improvement" of the Carnot en-
gine is the endoreversible engine
shown schematically in Figure 3.

Generalized potentials
A potential is a measure of the

capability for a system to do work; a
thermodynamic potential is a general-
ized potential in the sense that heat, as
well as any mechanical, electromagnet-
ic or other reversible source, may be
used as a source of the work. The
traditional thermodynamic potentials
are state functions defined in such a
way that the difference in the potential
between any state A and any other
state B of the system considered is the
maximum (and therefore reversible)
work that the system can produce
during any process that carries it from
state A to state B under given con-
straints. For example, the internal
energy U applies to adiabatic processes,
the Helmholtz free energy H applies to
isothermal-isochoric processes while
the Gibbs free energy G applies to
isothermal-isobaric processes. All of
these potentials may be generalized,5

under suitable conditions, to describe
the capability of a system to do work
under arbitrary constraints, for exam-
ple, within a specified interval of time.
The utility of these generalized poten-
tials thus is the same as of those we
have become accustomed to in tradi-
tional thermodynamics, namely, they
provide upper bounds to work produc-

HOT CONTACT TIME r,

tion without the need to derive the
actual path. The advantage of finite-
time potentials compared to reversible
potentials is that their bounds are
lower and hence more realistic.

We have derived the conditions for
the existence of thermodynamic poten-
tials generalized to finite-time pro-
cesses both in a familiar form, in terms
of conventional calculus of variations,
and in a more general and powerful
form in terms of abstract manifolds.5

The basic result states that, given a
thermodynamic system passing
through a sequence of equilibrium
states, one can identify a function of
state p such that changes in p between
any pair of states will equal the maxi-
mum work done during the passage of
the system between those states. The
theorem is sufficiently general to guar-
antee the existence of a potential p,
even when the system reaches equilib-
rium relatively seldom. To calculate a
potential p the work must be express-
ible as a path integral in terms of
generalized forces and displacements

W= ff-dx

To find p, one adds to fdx an integrat-
ing term gdy, where dy is necessarily
zero when one takes into account the
constraints defining the process. The
mathematical problem has two steps:
finding a function g that makes
fdx + gdy an exact differential dp,
and then finding p itself. Note that the
constraint dy = 0 could itself be de-
rived from a condition in the form of a
differential equation or from a more
familiar thermodynamic condition
such as constant temperature or pres-
sure.

Trying to describe systems with in-
ternal rate constraints among quan-
tum states, for example, between differ-
ent vibrational modes, has made us
aware of the importance of the second
condition—of having a well-defined in-
tegral for the process variable (usually
work). This seemingly trivial condition
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Tricycle engine. A simple general engine
(bottom) operates at three different
temperatures 7",, T2, 7"3, absorbing or
releasing heat at each temperature. Work is
simply heat transferred at infinite
temperature (that is, zero entropy). Such a
cycle can always be decomposed as shown
into a reversible part (middle) and an
irreversible flow of heat from 7", to T3

('OP)- Figure 5

becomes more important when one
tries to describe the extraction of work
from a system at a rate faster than that
system can equilibrate internally. In
such a case, thermodynamic variables
lose their meaning, and one must go to
a definition of work in terms of energy
transfer at the microscopic level. This
approach can sometimes be too com-
plex to be useful. Nevertheless, work
and availability can be denned for some
systems, such as simple lasers whose
operation depends on changes in popu-
lations of specific quantum states.6

Another approach relies on the "maxi-
mum entropy" formulation used in
information theory for defining ther-
modynamic variables: If P, is the
probable fractional population of the
jth level, then one postulates that the
distribution over all the quantum
states of the system takes on that form
which maximizes the quant i ty
-kljPjlnPj, subject to whatever
constraints are given. This maximized
sum is then identified as the entropy S.
Friedrich Schlogl and later Raphael
Levine established the relation
between the maximum-entropy ap-
proach and thermodynamic availabil-
ity7 as part of a broad effort to develop
this method.

The optimal path
In some cases it may not be enough to

know what is the maximum work that
can be extracted during a given pro-
cess—calculated, for example, from the
generalized potentials described above.
One may also want to know how to
extract this maximum work, that is, to
specify the time path of the thermody-
namic variables of the system. The tool
for obtaining this path is the discipline
called optimal-control theory.

To set up an optimal-control problem
we must specify:
• The controls, that is, the variables
that can be manipulated by the opera-
tor (for example, a volume, rate, vol-
tage, heat conductance, and so on)
• The limits, if any, on the controls
and on the state variables (for example,
to avoid unphysical situations, such as
negative temperatures and infinite
speeds)
• The equations that govern the time
evolution of the system (usually differ-
ential equations describing heat-trans-
fer rates, chemical-reaction rates, fric-
tion and other loss mechanisms)
• The constraints that are imposed on
the system: what is conserved, what is
held constant, what processes are re-
versible, and so forth (expressed as
differential or algebraic relations, rep-
resenting constraints acting at every
instant, or as integral or global rela-
tions, representing constraints acting
over the entire interval)
• The desired quantity to be maxi-
mized, called the objective function and

usually expressed as an integral
• Whether the duration of the process
is fixed or part of the optimization.
Maximizing the objective function with
the usual methods of the calculus of
variations leads to a set of coupled,
nonlinear differential equations.
These are usually so complex that a
qualitative analysis and a numerical
solution are the only hope. Thus,
answering the more exacting question
about the optimal time path rather
than the standard question about maxi-
mum performance requires a consider-
ably larger computational effort. On
the other hand, once the time path is
calculated, all other thermodynamic
quantities may be derived from it,
much like the wave function is the
basis of all information in quantum
mechanics. Many results we describe
in subsequent sections of this article
have been obtained by optimal control
theory.

Criteria of performance

The earliest criterion of performance
for engines, the efficiency, was used to
measure how much water could be
pumped out of a mine by burning a ton
of coal. It has subsequently been gener-
alized to provide a criterion of perfor-
mance for all heat engines: work
produced per heat energy input. Other
criteria, such as effectiveness, can be
defined that involve loss in availability
or changes in other thermodynamic
potentials.

While the traditional criteria of per-
formance generally consider the ideal
process as a reversible one, some inves-
tigators have considered processes op-
erating at nonzero rates. J. Geusic, E.
O. Schulz-DuBois, and H. E. D. Scovil6

treated the three-level laser with a
thermodynamic formalism that looks
amazingly similar to one we later
devised independently8 for macroscopic
processes with heat leaks, friction, and
finite rates of heat transfer. The laser
analysis maximized the work that
could be produced as light energy when
the ratios of level populations are used
to define the reservoir temperatures.

Another treatment9 has envolved
into almost a classic paradigm of sys-
tems operating in finite time: Frank L.
Curzon and Boye Ahlborn considered a
Carnot engine with the ingenious vari-
ation that it is linked to its reservoirs
through finite heat conductances (fig-
ure 3). Curzon and Ahlborn asked,
what process maximizes the power
produced by the engine. Any reversi-
ble system produces zero power, of
course, and maximizing power forces us
to deal with systems operating at finite
rates. Operating reversibly, the effi-
ciency of this engine is just the Carnot
value of 1 - (T, /Th); but Curzon and
Ahlborn were able to show that when
the system operates to produce maxi-
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Inaccessible

SCALED LOSS/>/v

Power output of an engine as a function of the heat rate and its internal friction. The heat flows to and from the engine
through materials of finite conductivity (as in figure 3), and there are frictional losses within the engine, taken as linear in
the speed of the engine. At negative heat rates, the engine functions as a heat pump. At positive rates it delivers power,

up to a maximum; heat rates above the maximum are physically inaccessible. When the friction v is small compared to
the thermal resistance p (to the left) there is a single—and in fact constant—heat rate that maximizes power. When the

friction is large there are two possible heat rates (and efficiences) that yield the same power. Figure 6

mum power the efficiency of the engine
is only 1 - v(T,/Tb ). In such an engine
a maximum for the power can only be
achieved by paying for it in lowered
efficiency. Curzon and Ahlborn also
pointed out that typical power plants
are properly so named: They operate
much nearer the point of maximum
power than the point of maximum
efficiency.

Other criteria of performance are the
rate of entropy production and the rate
of loss of availability. The concept
entropy production was introduced in
the earliest thinking about irreversible
thermodynamics—but more from the
differential, local and instantaneous
viewpoint than from the global, inte-
gral view of entire optimized processes.
Under some circumstances, optimizing
one of these quantities is equivalent to
optimizing another. For example, in
those cases in which the irreversibili-
ties can be represented as spontaneous
heat flows, minimizing the entropy
production turns out to be equivalent to
minimizing the loss of availability.4

One can sometimes say a good deal

about the possible behavior of a system
even if one knows only that it operates
to optimize some (unknown) function
from a known class. While such an
approach has obvious, tantalizing pos-
sibilities for biological systems, the
only case in which it has been applied is
in a description'" of maximizing the
revenue from a power-generating
plant. All solutions to the maximized-
revenue problem for an endoreversible
engine with finite heat conductances
are bounded on one side by the solu-
tions to the maximum-power problem
and on the other side by the solutions
corresponding to minimum loss of
availability as illustrated in figure 4.
The optimal controls of both extremes
have been worked out in detail for
endoreversible heat engines.4"

The tricycle formalism
An entirely different way to assess

the cost of finite-time operation is the
"tricycle" formalism,8 a construction
based on conservation equations for the
process in question. We represent a
heat exchange-system schematically,

as in figure 5, by a triangle with heat
flows Q,, Q2 and Q3 into reservoirs with
temperatures 71,, T^ and T3. A conven-
tional heat engine or refrigerator is a
special case of this scheme, with one of
the temperatures, T, say, infinite, so
that zero entropy flow is associated
with the energy flow Q,, which can thus
be identified as work. In general, one
can divide a tricycle process into its
reversible part with zero entropy pro-
duction, AS = 0, and a totally irrevers-
ible component, as indicated in figure
5. One learns nothing new, of course,
from such a decomposition per se, but
by including specific loss mechanisms,
such as heat resistance, friction and
heat leaks, one can deduce the rate
dependences of these irreversibilities.
It may seem that these three loss
mechanisms should be treated individ-
ually, but they are in fact interdepen-
dent and can be determined simulta-
neously.

A convenient form to present the
results is a contour diagram or a three-
dimensional plot, such as figure 6,
where the height represents power
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output for a heat engine or heat pump.
(We have plotted reduced variables:
the ordinate is a measure of heat rate,
and the abscissa of friction, both mea-
sured relative to thermal resistance.)
Observe that the heat-rate axis is
divided into three distinct regions: The
system operates as a heat pump for all
negative values and as a heat engine
for positive rates, but only up to a
certain limit; operation at larger values
is impossible because such large heat
rates would require negative tempera-
tures to overcome the resistances.

The loci of maximum power are
indicated in color, and for negligible
friction (to the far left) there is indeed a
single maximum power the engine can
deliver, as we discussed earlier. As
friction increases, a classical bifurca-
tion splits the locus of maximum power
into two, with a minimum in between.
In this region there are two quite
different heat rates, each of which
produces the same maximum power—
but obviously at vastly different ther-
mal efficiencies. The bifurcation di-
vides the heat-engine region into dis-
tinct regions: a low-friction region
dominated by heat resistance, and a
high-friction region. Because there is
no limit to how much power one can
supply to speed up the pump, the heat-
pump region (negative heat rate) shows
no such structure.

The advantage of such diagrams over
a single optimum-performance number
is that one can also read the cost for off-
optimum operation. For example, in
the low-friction region of figure 6 it is
very slight. One can, of course draw
similar diagrams for the efficiency or
any other objective function.

The tricycle formalism, with the
reversible and irreversible contribu-
tions separated, allows one to calculate
which are the most serious losses from
irreversible processes. Certain pro-
cesses, such as ordinary distillation,
have unavoidable irrebersibilities built
into them. By separating the tricycle
for the unavoidable losses from that for
excess losses, one can determine how
much room there is for improvement:
The cycle of excess losses can show how
to improve the process itself; the cycle
of unavoidable losses can show what
improvements can result from a
change in process.

Finite-time availability
Two of the most recent, and the most

powerful results obtained so far, relate
to the available free energy in finite-
time processes. One is a definition12 of
"finite-time availability." Gibbs ori-
ginally defined the availability A of a
system in contact with given surround-
ings to be a state function such that the
decrease in availability in going from
state i to state f is the maximum (and
hence reversible) work that can be

6

TEMPERATURE T,/To

Effect of time scale on engine operation. Two endoreversible
engines extract heat from two finite reservoirs at T, and 7"2; both

engines reject heat to an infinite low-temperature reservoir at 7"0. The
hot reservoirs are also coupled to each other via a heat-conducting

medium. The object is to maximize the amount of work extracted
during a time r while the two reservoirs are also coming to equilibrium.
The spots indicate the temperatures of the reservoirs at each 0.1 unit

of time. Note that the evolution of the system depends on the value of
the time T. Figure 7

extracted during this process. The
finite-time availability s/ retains this
property of telling us how much work a
system can supply. When we add the
restriction that the process must oper-
ate only during the interval r = tf — t,,
then we define

- A.;/ = x (r)

= max Ait,) - Ait,)

where StM is the total rate of entropy
production. In this expression the dif-
ference in traditional availability
A{t,) — A(tf) is of course the reversible
work produced in a process from the
initial to the final state; the last term
represents the work lost to the environ-
ment by production of entropy (that is,
the losses in the process). The search
for a maximum be constrained to reach
exactly a given final state at tt (the
initial state is always considered
known), in which case AA is fixed and
the optimization becomes one of mini-
mizing the entropy production; the
search may also include the final state
in the optimization, in which case A.r/
must be evaluated by optimal control.
If the final state is specified, a solution
may not exist if r is too short, because
only a certain set of states can be
reached from a given initial state in
time T.

The finite-time availability does not
necessarily have AA as its limit for very
long times, because the system may
contain internal relaxation processes
that remain irreversible even for very

slow operation. If there is a direct heat
leak from the system reservoir to the
surroundings, as in the tricycle exam-
ple above, then a long process time r
may even reduce — AsJ to zero.

The finite-time availability is as gen-
eral a quantity as the traditional avail-
ability, that is, it can be applied to any
thermodynamic process. Figure 7
shows some results from a study12 of a
work-producing system with competing
internal relaxation. The description
used in this study is general enough to
be applied, for example, to heat en-
gines, internal molecular degrees of
freedom, hydraulic systems, or chemi-
cal reactions, simply by suitably identi-
fying the variables.

The other recent finding concerning
availability is a very simple and gen-
eral bound for the Gibbs availability A
that must be lost in a process if a
system is driven in a finite time r via
states of local thermodynamic equilib-
rium from an initial equilibrium state i
to a final equilibrium state f. This
bound13 makes explicit the cost in
availability of finite-time operation; it
arises as a result of minimizing the
"distance" traversed in going from i to/"
in the abstract space of the indepen-
dent extensive variables of the system.
Frank Weinhold14 identified the ma-
trix second derivatives of the internal
energy U with respect to the extensive
variables as a metric tensor on this
space, that is, the distance between
"points" separated by dX, is given by

ds2=

The newly derived bound is a function
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Internal energy U of equilibrium states of a thermodynamic system
as a function of extensive variables X,,X2,... forms a surface in a

multidimensional space. One can define a metric on this surface such
that the length of the path taken between two states of the system, /

and /, is related to the loss of availability engendered by the
process. Figure 8

X2

X,

of this distance: If the process takes
place in time r, then the dissipated
availability — AA is bounded by the
square of the length of the shortest
path from i to f multiplied by elr,
where e is a mean relaxation time of
the system. If the process is endorever-
sible, the bound can be strengthened to
— AA>L2f/r, where L is the length of
the path actually traversed from i to f.
The geometry is illustrated in figure 8.

Some specific systems

We now turn to some specific optimi-
zations. Clearly we cannot list all the
important contributions to this field—
these include, for example, work by
Michael Mozurkewich, John Ross, Rob-
ert Ross, Luigi Sertorio and Schlogl in
addition to what we describe below.

Morton Rubin15 applied the vari-
ational tools of optimal control theory
to find the time path for the endorever-
sible engine of figure 3 that maximizes
the power output. Without any restric-
tions as to the type of branches, limit-
ing only the reservoir temperatures,
heat conductances, and rate of change
of volume, he found the optimal cycle to
consist of six branches: two isotherms
and four maximum-power branches,
but no adiabats. The adiabats of a
Carnot cycle are replaced by the maxi-
mum-power branches along which the
volume changes at its maximum per-
missible rate; the working fluid is still
in contact with one or the other heat
reservoir. Thus the optimal cycle is
never isolated from both its reservoirs.
If the limitation on the rate of volume
change is lifted, these new branches
proceed instantaneously and thus be-

come adiabats. In effect, the system
operates as nearly like a Carnot cycle
as its time constraints allow.

In a subsequent study16 Rubin made
his system more realistic by restricting
the compression ratio, that is, the ratio
between the largest and smallest vol-
ume, to a fixed value. With this con-
straint the number of branches in the
optimal cycle increased to eight: two
fixed-volume branches enter where
each pair of maximum-power branches
meet. These branches allow the work-
ing fluid to heat up or cool at its
limiting volumes.

In most real heat engines the heat
sources and heat sinks are not infinite.
For example, the combustion products
in gasoline and diesel engines have
finite heat capacities and the exhaust
gases should in principle be cooled
completely to the surrounding tem-
perature during the power stroke. In
some engines magnetohydrodynamic
pre-cycles and steam-turbine bottom-
ing cycles are added to conventional
heat engines to increase the heat ener-
gy used. However, maximizing the use
of heat in such systems will probably
require new cycles with heat-accepting
(and possibly discharging) branches de-
signed to match the heat capacity of the
exhaust gas. Finite-time thermody-
namics can provide such new cycles.1'

Yehuda Band, Oded Kafri and Sala-
mon18 have designed a model that
maximizes the power from an engine
driven by a time-dependent source
supplying heat at a rate fit). This
thermal energy simulates a variable
supply of energy to the working fluid
either from internal degrees of free-

dom, as one finds in chemical reactions,
or from an external source, as in laser-
driven engines or external-combustion
engines. The model has the working
fluid coupled to a heat bath at tempera-
ture Ttee(t) through a coupling obeying
Fourier's law, with conductance K. If
one does not include friction, one can
solve the model analytically for an
arbitrary working fluid: The tempera-
ture of the working fluid should be kept
proportional to (f+KTTI,s)

1'2 to maxi-
mize the output power. Including fric-
tion in the model forces one to resort to
numerical solutions for specific work-
ing fluids and specific heating func-
tions, fit).

The optimal path has to balance
three factors:
• To reduce loss of energy to the heat
bath, the working fluid should be cold
• To reduce the amount of entropy
carried by fit), the working fluid should
be hot
• To reduce losses due to friction, the
velocity of the piston should be small.
If the pumping heat supply /'is a given
periodic function of time and if friction
is negligible, then the maximum aver-
age power delivered by the model is
equal to the variance of (f+ KTC<!S)

X''A.
One can further show that the form of
fit) giving maximum power is a delta
function, dumping all the heat into the
working fluid at an instant when its
temperature is high, again to minimize
the concomitant addition of entropy.

Together with several colleagues, we
have studied11' exothermic chemical
reactions supplying heat to a mechani-
cal heat engine, using the methods of
finite-time thermodynamics. It was no
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surprise that the reactions convert
heat most efficiently when the conver-
sion is infinitely slow and the power
output is zero. On the other hand,
maximizing the power implies a rate of
operation that puts the region of most
rapid reaction, the "combustion zone,"
at the downstream end of the reactor,
as anyone who has observed the glow of
gases from a Bunsen burner can con-
firm. The "combustion zone" becomes
narrower as the activation energy of
the driving chemical reaction in-
creases.

The research described here that was carried
out at the University of Chicago was initially
supported by a grant from the National
Science Foundation and then by grants from
the Department of Energy and the Exxon
Educational Foundation. Many of the ideas
were generated at workshops conducted at
The Aspen Center for Physics, for whose
hospitality the authors are indebted.
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