
Computational
synergetics
As a heuristic tool, used to explore complex
dynamical behavior, computers allow us to
discover unexpected linkages and new
concepts in nonlinear systems.

Norman J. Zabusky

Computers, used in what I shall call the
"heuristic mode," can greatly enhance
our understanding of the mathematics
of nonlinear dynamical processes—a
field that is taking on increasing impor-
tance as we explore the complex behav-
ior that even simple systems often
exhibit. As I shall try to show, comput-
ers allow us to penetrate into unexplored
regions of mathematics and to discover
unforeseen linkages among ideas.

Almost everyone who has used a
computer has experienced instances
where computational results have
sparked new insights: uncovering mis-
takes in derivations or calculations;
suggesting when to try a new ansatz or
analytic approach; or, occasionally,
shining the light of inspiration into
areas that had been thought devoid of
new concepts or fundamental truths. It
is this last use that I call heuristic, where
the computer is being used to increase
awareness of essential phenomena and
thereby lead to a discovery.

Instead of attempting a philosophical
discussion of these general ideas, I will
try in this article to show with concrete
examples how numerical solutions of
complex nonlinear problems—often
displayed most naturally by graphs or
cinemas—may liberate us from the
prejudices of our conservative and
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sometimes misguided intuitions. My
examples will be drawn from work on
nonlinear partial differential equa-
tions, particularly from my own work
on the Fermi-Pasta-Ulam problem
and solitons. I will also illustrate the
state of progress in two frontier areas:
vortex dynamics of two-dimensional
incompressible wakes and jets, and axi-
symmetric supersonic jets (figure 1).

Nonlinear problems are almost al-
ways difficult, often with solutions that
are unexpected and thus hard to obtain
a priori. A computer can in such
situations serve as a probe, to force an
opening into an obscure or resistant
region. Numerical answers to a prob-
lem can lead a prepared investigator to
a solution by conventional analysis—
occasionally an exact solution but more
often an asymptotic form. In attempt-
ing to understand the details of the
computer solution one may uncover a
new group of problems or a new aspect
of the given equations that give rise to a
deeper understanding. An example of
this synergism took place at Los Ala-
mos in the 1940s. Enrico Fermi noticed
that a set of computational results was
insensitive to changes in a parameter.
When he set it to zero, he was left with
equations that were analytically trac-
table, obviating the need for much
further calculation and giving a much
clearer insight into the physics.1

Historical perspective

Lewis Richardson in his remarkable
book, Weather Prediction by Numerical
Processes (written, in part, at the front

in World War I, and published in 1922),
foresaw how computers could revolu-
tionize our understanding and predic-
tion of meterological processes through
numerical solution of partial differen-
tial equations. However, he seemed
unaware of the complexity of the phys-
ical problem, and he was not aware of
the stability conditions required for a
numerical solution for the coupled
partial differential equations. (Ri-
chard Courant, Kurt O. Friedrichs and
Hans Lewy were the first to investigate
such conditions, in 1928.)

John von Neumann, who had been
intimately involved with numerical
analyses of fluid-dynamics problems
during World War II, foresaw all the
fundamental points I am trying to
make. In a famous lecture2 in 1946 he
asked "To what extent can human
reasoning in the sciences be more
efficiently replaced by mechanisms?"
and "What phases of pure and applied
mathematics can be furthered by the
use of large-scale, automatic computing
instruments?" He continued:

Our present analytical methods
seem unsuitable for the solution of
the important problems arising in
connection with nonlinear partial
differential equations and, in fact,
with virtually all types of nonlin-
ear problems in pure mathematics.
The truth of this statement is
particularly striking in the field of
fluid dynamics. Only the most
elementary problems have been
solved analytically in this field....

The advance of analysis is, at
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Supersonic jet. The jet, moving with a speed of Mach number 3.0 and having an initial density 0.1 times that of ambient
gas, enters continuously at left (at z = 0, r < 1). Figures a and b show the state of affairs at t = 60 units, a Outline of the
beam and cocoon; regions of divergence (or expansion) (that is, for which p ~ '6p/6t = V u Z 0) are shown in blue,
convergence (V-u5 0) are red, neutral regions (Vu~0) are white, b Pressure in the volume: high-pressure regions are
shown in red, low-pressure regions in blue, with intermediate pressures indicated in "rainbow" order. Note the shock
wave at right, c Space-time diagram for the on-axis pressure; time increases up from / = 0 at bottom to t = 60 in units of
(radius of jet)/(speed of sound in ambient medium). (Courtesy M. L. Norman, L. L. Smarr and K.-H. A. Winkler). Figure 1
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Nonlinear lattice. These graphs, from the
original paper5 of Fermi, Pasta and Ulam,
show (a) the total energy in each of the
first five modes as a function of time, and
(b) the displacement of the point masses at
various times (in cycles). There are 32
masses, coupled by slightly nonlinear
springs (linear plus quadratic potential),
initially displaced into a single cosine wave.
Note the almost perfect recurrence of the
initial condition after about 30 000 cycles of
oscillation. Figure 2
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this moment, stagnant along the
entire front of nonlinear prob-
lems. . . . This phenomenon is not
of a transient nature, bu t . . . we
are up against an important con-
ceptual difficulty . . . yet no deci-
sive progress has been made . . .
which could be rated as important
by the criteria that are applied in
other, more successful (linear!)
parts of mathematical physics.. ..

It is important to avoid a misun-
derstanding at this point. One
may be tempted to qualify these
[shock wave and turbulence] prob-
lems as problems in physics, rather
than in applied mathematics, or
even pure mathematics. We wish
to emphasize that it is our convic-
tion that such an interpretation is
wholly erroneous. . . .

They give us the first indication
regarding the conditions that we
must expect to find in the field of
nonlinear partial differential
equations, when a mathematical
penetration into this area, that is
so difficult of access, will at least
succeed. Without understanding
them and assimilating them to
one's thinking even from the strict-
ly mathematical point of view, it
seems futile to attempt that pene-
tration. . . .

That the first/and occasionally
the most important, heuristic
pointers for new mathematical ad-
vances should originate in physics,
is not a new or a surprising occur-
rence. The calculus itself originat-
ed in physics. . ..

We conclude by remarking the
really efficient high-speed comput-
ing devices may, in the field of
nonlinear partial differential
equations as well as in many other
fields which are now difficult or
entirely denied of access, provide
us with those heuristic hints which
are needed in all parts of math-
ematics for genuine progress
This should ultimately lead to
important analytical advances.
Stanislaw Ulam emphasized the role

of good graphics in his discussion3 of
computing machines as a heuristic aid
in 1960—a discussion he also headed
"synergesis." The visualization of
mathematics will also be a focus of this
article. I will try to demonstrate how
signatures that show up in graphical
displays can serve as nuclei around
which a well-prepared investigator can
form ideas and concepts: One good
graph that highlights the evolution of a
coherent pattern can be worth more
than a thousand equations. Appropri-
ate graphical displays (and I will show
some below), especially ones that are
constructed and compared on a screen
as the investigator interacts with the
computer, will improve our ability to
choose wisely among promising paths.
This mode of investigation couples
naturally with the usual approaches of
experiment, theoretical formulation,
theorem proving, and asymptotic ap-
proximation.4

Heat conduction in a lattice
One of these intractable nonlinear

problems is the conduction of heat in a
nonmetallic lattice. Already in 1914,
Peter Debye suggested that the finite
thermal conductivity of these lattices
arises from the nonlinear interactions
among lattice vibrations (what we now
call phonon-phonon scattering). The
problem of deducing a finite thermal
conductivity for an anharmonic lattice
has challenged theoretical physicists
for the last fifty years, and has pro-
duced a great many false starts and a

great many theories that overlook
some essential fact. No one doubts that
the connection exists, but the deriva-
tion had proved elusive.

To illuminate the problem, Fermi,
John Pasta and Ulam set out in 1955 to
investigate how long it takes a long-
wavelength oscillation to equilibrate in
a nonlinear one-dimensional contin-
uous string. Such a system was gener-
ally considered to obey the usual "ergo-
dic" behavior, in which an initial ener-
gy distribution relaxes, to be shared
equally among all the degrees of free-
dom of the system. The specific case
considered5 by Fermi, Pasta and Ulam
is a discrete version of the string: a set
of N identical masses in a line between
fixed walls, coupled to each other (and
the walls) by identical springs, each
with a small power-law nonlinearity.

Much to their surprise, when Fermi,
Pasta and Ulam performed the calcula-
tions on the MANIAC computer at Los
Alamos, they found that the oscilla-
tions of the system showed "very little,
if any, tendency toward equipartition
of energy among the degrees of free-
dom." The most striking aspect of the
behavior was a near-recurrence of the
initial condition after a large number
of oscillations: after 158 of the linear
system's periods 2irim/K)1/2 more than
97% of the energy was restored to the
fundamental mode. Varying the
strength of the nonlinearity and the
number N of particles (from 16 to 64)
produced no qualitative differences in
the behavior. Figure 2 shows results
for one of the cases. The returns are
clearly not numerical artifacts.

One could now take two different
approaches: either to worry about the
lack of equilibration and look for it
elsewhere or to wonder if the character
of these solutions is an aspect of some-
thing more general. The first (and, I
suspect, more common) approach
would lead one to other models to try to
find some that did exhibit the equipar-
tion one is looking for—by changing
masses or spring constants, for exam-
ple; or it could lead one to appeal to
intuition to argue that in real, three-
dimensional systems there are so many
degrees of freedom and so many trajec-
tories in phase space that the expected
ergodic behavior is much more likely
than in the one-dimensional system
Fermi, Pasta and Ulam considered.
The other (which I would call the
heuristic) approach would lead one to
ask, is there something essentially new
and interesting in these near recur-
rences that the computer has found-
do they result from the manner in
which we made a discrete problem for
the computer from the original, contin-
uous one? It turns out that is does.

If we look at the graphs for the
Fermi-Pasta-Ulam calculations we
can see that, contrary to expectations,
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Solutions of the Korteweg-de Vries equation. These graphs, from N.
J. Zabusky, M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965), show (a)
the solutions of the KdV equation at three different times, and (b)
trajectories of the maxima on a space-time diagram from t = 3.6
tB = OAtR to t>0.5tR (tp is the near-recurrence time). The peaks into
which the solution breaks up are numbered in a; the same numbers
are used for the trajectories in b. The parameter <5 of equation 3 is
0.022; the initial waveform is u{x,0) = COSJWC, and the boundary
conditions are periodic. Compare this figure with figure 2 for
usefulness in elucidating the soliton concept. Figure 3

only a small number of modes partici-
pate in the dynamics. Recognizing
this, Martin D. Kruskal suggested that
one should be able to see similar
behavior in a continuum model as well,
that is in a model described by a
nonlinear partial differential equation.
Kruskal's stimulating presentation of
this problem at a seminar at Princeton
in 1960 led me to join him in trying to
unravel the problem posed by the
Fermi-Pasta-Ulam results.

A typical textbook derivation of the
wave equation will start with Newton's
second law for coupled masses in one
dimension and proceed to the limit as
the masses become a continuum, for
example by letting the distance h
between them approach zero while
keeping the mass per unit length and
the spring stiffness constant. For a
nonlinear (cubic) potential, the discrete
version is of the form

>ndt 2X. = Kiyn + i - 2yn + yn _ j )

X[l+a(yn+1 -yn-0]

The term in a arises from the cubic part
of the- potential energy. (One can
choose the time step for solving the
differential equations on the computer
to be sufficiently small that it does not
affect the results.) To produce the
continuum version, we let

A7i
h2K/m

2ah

0
1

> c2

e

To lowest order in h, then, the discrete
equation becomes

dt
2y = c2(dxy)[l + edxy] (1)

The fixed boundar ies of the s t r ing

require y(O,t) = y(l,t) = 0. Here we use
the shorthand dx =dldx and d, =d/dt.
(Note that for a linear string e is 0, and
the equation simply reduces to the
ordinary wave equation for waves prop-
agating with a speed c.) To analyze the
continuum equation, Kruskal assumed
periodic boundary conditions, that is
y(O,t) = y{\,t), and was able to reduce
the nonlinear wave equations via an
asymptotic heuristic argument and
several changes of variables to the first-
order equation

dt u + udx u = 0 (2)

(the dependent variable u here, which
is roughly dxy + dty, is related to what
is called a Riemann invariant of the
previous equation.) Solutions of this
first-order equation are not well-be-
haved: With the initial and boundary
conditions we have imposed, the deriva-
tives of the solutions, u, become singu-
lar in a finite time tB. There is no
corresponding singularity apparent in
the numerical calculations.

The question then arises, is the
breakdown a result of the low-order
approximation (which produced the
first-order equation) or of the periodic
boundary conditions (instead of the
fixed boundaries)?

In 1962 I was able to show that
equation 1 (the nonlinear wave equa-
tion) with fixed boundary conditions
also exhibits the breakdown. Two
years later Peter Lax was able to show
that the same kind of breakdown oc-
curs under a variety of conditions in
the class of equations

Investigating the breakdown, or "blow-

up," of solutions has now grown into a
branch of analysis for systems of non-
linear partial differential equations.

Somewhat later in 1962, I did the
calculations analogous to those of Fer-
mi, Pasta and Ulam, but for periodic
boundary conditions, and found the
same near-recurrence of the initial
condition. Like the results for fixed
boundaries, the calculations show only
a very small effect at the breakdown
time tB.

The Korteweg-de Vries equation
Given that the lattice solutions con-

tinue smoothly beyond the breakdown
exhibited by the solutions of equations
1 and 2, how must we modify the
continuum equations to model the lat-
tice solution?

At a conference in 1963 on math-
ematical modeling,6 we proposed keep-
ing the next higher-order term in the
spring length h to give a continuum
equation that could avoid the break-
down and possibly model the near-
recurrence phenomenon. We were
thus led to explore the equation

(c2h2/12)dx
4y (3)

Essentially, by keeping the term with
an explicit h in it, we are taking into
account the graininess or dispersive
effects of the medium. (Note that we
are not taking into account the graini-
ness of time that the computations also
assume. Fermi, Pasta and Ulam had
noticed that varying the time incre-
ment had some effect on their results;
however, these effects are similar to
those of the spatial graininess.)

At this point Kruskal applied some
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The modified KdV equation
If the anharmonic part of the
potential energy of the Fermi-Pasta-
Ulam lattice described in the text is
changed from cubic to quartic, the
asymptotic limit yields a modified
Korteweg-de Vries equation:

It has a localized solution

u = .<4sech[0c — ct)/L]

where A = 61/2S/A and c = A2/6.
Kruskal and I found several
conservation laws. An incisive
breakthrough came when Robert
Miura, who was calculating
conservation laws, realized an
equivalence (the "Miura"
transformation), namely:

If i; is a solution of the modified
KdV equation

dTv-6v2dxv + dx
3v = 0

then

u = v2 + dx v

is a solution of the KdV equation

dTu-6udxii + dx
3u = 0

The figure below shows the
trajectories of extrema for the
interaction of two solitons of the
modified KdV equation: A
compressive (positive) soliton of larger
amplitude overtakes a rarefactive
(negative) soliton; they both
experience a phase shift.
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ideas from his work on an asymptotic
theory for Hamiltonian systems having
almost-periodic solutions and obtained
the third-order equation7

dtu + udxu + S2dx
3u = 0 (4)

Here the "slow time" t corresponds to

ect/2 in the earlier equation, and the
parameter S2 is h2/12e.

This equation was first obtained in
1895 by D. J. Korteweg and G. de Vries
to describe the propagation of long-
period waves in shallow water, of the
sort observed by John Scott Russel in
1834 on the Union Canal near Edin-
burgh.8 Since then it has cropped up in
many other contexts as an asymptotic
description of long-wave propagation.
Korteweg and de Vries had already
found a localized stationary solution:

u(x,t) = uo + Asech2[(x - cfl/A] (5)
where c = u0 + A/3 and A2 = 12S2/A,
that is, the propagation speed depends
on the amplitude of the wave. They
had also found periodic solutions, the
so-called "cnoidal waves."

Kruskal and I set out to find exact
solutions by applying standard pertur-
bation methods to find other solutions
of the KdV equation, using equation 5
as a basis, but without much success.
However, we found we could obtain
two "conservation laws" of the form

dtT
n) = 0 (6)

where 7*"' and .X*"' are functions of u
and its spatial derivatives. Such rela-
tionships imply essentially that the
integral of T over all x remains con-
stant in time—that is T is a conserved
quantity.

We then turned to a numerical simu-
lation of the KdV equation with period-
ic boundary conditions, and with initial
condition u(x,0) = cosmc, corresponding
to a long progressive wave on the
lattice. We found the near-recurrence
we expected, at a time I will call tR, as
well as other interesting results, but we
did not understand the reasons for the
recurrences any better than for the
Fermi-Pasta-Ulam problem. Gary S.
Deem had recently joined Bell Labs at
Whippany and assisted us with the
programming and graphics. Although
we pored over numerous polar dia-
grams of modal energy vs. modal phase,
and both energy and phase vs. time,
they told us little of what was happen-
ing. So we began to look at the
waveforms of u(x,t) and quickly real-
ized that the solitary-wave solution
with the hyperbolic secant shape (equa-
tion 5) dominates the evolution of the
waveform.9 The "solitary" waves
emerge from the initial waveform,
propagate, and sometimes merge with
other waves of different amplitudes to
form smooth regions that soon decom-
pose again to form the pulses that had
merged.

Figure 3 shows the behavior of solu-
tions of the Korteweg-de Vries equa-
tion for an initial cosine wave; the
graphs show both the waveforms at
various times and the trajectories of
the maxima on a space-time diagram.
After an initial period (corresponding

approximately to 3.6tB), nine well-
formed sech2 pulses appear. When
they interact with each other they
"accelerate" or "decelerate," giving
rise to a phase shift, but otherwise they
are remarkably stable. To someone
who regarded these sech2 pulses as
some kind of elementary particle it
would appear as if they had briefly
merged to form an excited state. The
results were so dramatic that Deem
and I summarized them in a computer-
generated cine film. This film also
contains solutions to the modified KdV
equation (see the box at left) and to the
cubic lattice; it is in the Bell Labs film
library, and I believe it has been an
inspiration for research workers and
students.

Somewhat later (in 1972) Fred Tap-
pert produced contour plots of u(x,t) on
a space-time diagram. Figure 4, one of
his plots, clearly shows five maxima
emerging from the initial cosine wave,
propagating with nearly uniform
speeds, suffering phase shifts after
interacting and temporarily "coalesc-
ing" at the near-recurrence time tR.
Note that although this information is
in principle contained in plots of wave-
forms, such as those of figure 2, it is
only in plots like this or in sequences
that show the time evolution (as in a
cine film) that one could actually see
the underlying regularity.

Solitons
The remarkable stability of these

localized waveforms led us to call them
"solitons." Other such localized, or
periodic, stable waveforms have since
appeared in many other physical con-
texts, and it is useful to define a soliton
generally as

a localized or solitary entity that
propagates at a uniform speed and
preserves its shape and speed in
interactions with other such enti-
ties.

A more mathematically precise defini-
tion relates10 the soliton amplitudes
and speeds to the discrete eigenvalues
of linear operators, but this will suffice
for our purposes. The box at left shows
another illustration of the phase shift
resulting from the interaction of two
solitons of the modified Korteweg-de
Vries equation.

The existence of solitons clarifies the
near-recurrences found by Fermi, Pas-
ta and Ulam. Nearly any smooth
initial condition leads to solitons ar-
rayed according to size in a nearly
linear fashion, as in figure 3a. They
propagate through the system at var-
ious speeds and at some sufficient large
time return to a similar, but ascending,
nearly linear array; time reversibility
then guarantees the near-recurrences.
However, the question remains: Are
these observations—for example, the
persistence of solitons and the near-
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recurrences—mathematically exact?
At the time that we were doing these

calculations at Bell Labs, Gerald B.
Whitham found a third conservation
law for the Korteweg-de Vries equa-
tion. Prompted by this discovery, we
also began to look for more conserved
quantities and soon found two more.
Then Robert M. Miura found five
more—there seemed to be no end. In
fact, Clifford S. Gardner, who also
joined our efforts at this time, was able
to show, using an ingenious transfor-
mation, that the Korteweg-de Vries
equation has an infinite number of
conservation laws. This insight opened
the way to an analytic understanding
of the KdV equation. The Princeton
group—Gardner, Greene, Kruskal and
Miura—exactly linearized11 the KdV
equation in 1967 and were able to show
that it is equivalent to what is called an
isospectral eigenvalue problem; the
constant eigenvalues are the invariant
soliton amplitudes and the properly
normalized eigenfunctions are related
to the solitons that emerge from the
initial waveform u(xfi). There also
exists an oscillatory solution of the
KdV equation that corresponds to the
continuous part of the eigenvalue spec-
trum.

In the early 1960s J. Perring and T.
H. R. Skyrme nearly discovered soli-
tons in a nonlinear field theory. In
discussing field theories for models of
mesons, Werner Heisenberg, Fermi,
Wolfgang Pauli and others had suggest-
ed that field theories did not have to be
linear. The model investigated by Per-
ring and Skyrme is now called the sine-
Gordon equation:

(Its name arises as a punning variation
on the Klein-Gordon linear model of a
relativistic meson field.) The equation
had, in fact, been known in differential
geometry since the end of the last
century and arose in the 1950s in
studies of the motion of crystal disloca-
tions. Perring and Skyrme found sta-
tionary solutions moving with a speed
less than c, which have come to be
known as particles, kinks or fluxons;
there are also solutions of the opposite
polarity—antiparticles, antikinks, or
antifluxons. Perring and Skyrme in-
vestigated these solutions numerically.
To their surprise, they found that kinks
scattered elastically off a fixed bound-
ary and they found waveforms that
exhibited kink-kink scattering as well
as kink-antikink scattering. Unfortu-
nately, no further work developed out
of these findings.

Why was this pioneering salient loss?
One possibility is that a majority of
particle physicists, at that time, be-
lieved in linear field theories. Further-
more, they felt that there was little
insight to be gained from problems in

one space dimension. Another, more
probable, explanation is that the com-
putational ambiance was neither broad
nor detailed nor valued enough to
sustain creative momentum to over-
come the barriers of "establishment"
intuition.

At about the same time that we were
beginning to understand the near re-
currences in the Fermi-Pasta-Ulam
problem, Morikazu Toda in Japan
found12 a one-dimensional lattice sys-
tem that supported solitary and period-
ic waves (see the box at right). For
small-amplitude oscillations, the Toda
lattice is consistent with the cubic
lattice, which is where Fermi, Pasta
and Ulam had started out.

In 1968, when I attended the Interna-
tional Conference on Statistical Me-
chanics in Kyoto, I was surprised to
find that Toda had solved the two-
soliton interaction for his lattice. It
wasn't until 1974 that Maurice Henon
and Hermann Flaschka showed the
integrability of the Toda lattice and
thus the persistence of multiply inter-
acting solitons.

Most nonlinear problems do not fall
into the class of integrable systems and
they exhibit both coherent and "chao-
tic" behaviors. Leo Kadanoff discussed
recent work on some ordinary differen-
tial equations and iterated maps in his
article on paths to chaos (December,
page 46). Particularly noteworthy ex-
amples of the synergetic use of the
computer4 are work by the meteorolo-
gist Edward N. Lorenz in the early
1960s and some discoveries by Mitchell
Feigenbaum in the late 1970s. Lorenz,
who is interested in weather predicta-
bility, explored the properties of a
system of three ordinary differential
equations that models a simple convec-
tive flow and found a "strange attrac-
tor," that is, chaotic behavior in a small
region of phase space. Feigenbaum
found universal properties of iterated
maps, namely that there exist univer-
sal numbers that determine param-
eters at which simple systems change
their evolutionary behavior (for exam-
ple, double their recurrence period).
The relevance of these results for
realistic continuum systems is under
active investigation.

Vortex dynamics
Another problem, mentioned by von

Neumann in his 1946 lecture, that
leads to equations intractable by classi-
cal methods is the evolution of turbu-
lent flows. The solution of such prob-
lems will elucidate such diverse fields
as the evolution of jets and wakes and
the predictability of atmospheric and
oceanographic weather. Until very re-
cently many of the analytical studies of
turbulent flows employed wavenum-
ber-dependent Fourier-transformed
variables. Physical-space variables

The Toda lattice
Consider a lattice of point masses
at positions rn. Their potential
energy is of the form

V(r) = (a/b)e ~br +ar + const

In dimensionless form, the
equations of motion are

rn = e " r " + 1 - 2 e - r " + e~ r ' -1

Or, with

the equation of motion becomes

sn/(l - M J = sn + 1 -2sn +sn_1

which has soliton solutions of the
form

sn = /32s

were not considered efficacious. That
view is changing. In 1977, I wrote13

In the last decade we have exper-
ienced a conceptual shift in our
view of turbulence. For flows with
strong velocity shear . . . or other
organizing characteristics, many
now feel that the spectral or wave-
number-space description has in-
hibited fundamental progress.
The next "El Dorado" lies in the
mathematical understanding of co-
herent structures in weakly dissi-
pative fluids: the formation, evolu-
tion and interaction of metastable
vortex-like solutions of nonlinear
partial differential equations.. . .
This approach of examining things in

physical space has recently been pur-
sued by James McWilliams, of the
National Center for Atmospheric Re-
search.14 He found that two-dimen-
sional decaying flows with high Reyn-
olds numbers did not exhibit Gaussian
statistics because of the emergence
(from an initial random-phase, power-
law energy spectrum) of many isolated,
"coherent" vortex states. In the discus-
sion he notes, "Much of our present
interpretation of atmospheric predicta-
bility limits is based upon (Fourier-
space moment) closure theory solutions
. .. and the possibility of long-lived
vortices may alter the interpretation."
That is, an alternative approach to
predictability may be emerging.

One of the classic problems of inho-
mogeneous turbulence is the flow of a
viscous fluid past a bluff obstacle or
over a thin flat plate, such as an
airplane wing, bridge span or even
mountain range. The flow is stable for
low velocities (low Reynolds numbers).
As the velocity is increased, the la-
minar flow becomes unstable on the
downstream side and localized vortical
regions grow and are shed into the flow.
These form (often very pretty) double
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Contour plot of solutions of the KdV
equation. This is essentially a more

detailed plot than figure 3b, but of
analogous information. In this case, the

initial waveform is again cosn-x; the
boundary conditions are periodic, and the

parameter <5 is somewhat larger than 0.022.
(The number of solitons under these

conditions is about 0.2/6.) This—previously
unpublished figure—was produced by F. D.

Tappert in 1972. Figure 4

rows of vortex regions, called "vortex
streets." At still higher Reynolds
numbers, experimenters have observed
a sudden breakdown of the slowly
changing pattern, which usually re-
sults in more chaotic and turbulent
regions. These qualitative features
have been known for a long time. In
the 1960s experiments by Hiroshio
Sato and his colleagues and by S.
Taneda indicated the possible develop-
ment of vortices in the wake of a flat
plate, and Taneda found evidence of
wavelength growth (approximately
doubling) in the far wake.13 Gary
Deem and I were the first to try to
understand aspects of this wake behav-
ior computationally.15

In describing the flow of an incom-
pressible fluid one starts with the
Navier-Stokes equations. These are
essentially Newton's second law for the
fluid and the equation of continuity

d, u + u-Vu = - (1/ po)Vp + vV2u (8)
V-u = 0

Here u is the velocity of fluid and p0 is a
constant density; p is the pressure and
v is the kinematic viscosity. Although
nature is three-dimensional, one can
gain a great deal of insight from well-
chosen two-dimensional problems
where there are only two coordinates
and the velocity vector has only two
components, u = (u,v), which greatly
reduces the computational burden. In
our computer simulations we used a
finite-difference algorithm on a period-
ic domain.

Let us consider a flat plate that
extends along the negative x-axis, with
a lip somewhat to the left of x = 0. The
fluid flows to the right. Experiments
have shown that a little downstream
from the lip of the plate, the laminar
velocity profile can be approximated by
a Gaussian function of the cross-stream
position y; we shall take this position as
x = 0. Because the memory and speed
of computers are inadequate to model
the complete physical domain, we con-
sidered a periodic region, namely
u(x + L,y) = u{x, v), which can be
thought of as a window "panning" a
piece of the fluid as it translates
downstream. To start things off we
introduced a perturbation: the lowest
sinusoidal harmonic mode (proportion-
al to sin 2vx/L), which has the largest
growth rate. Figure 5 shows a se-

quence of contour plots of the vorticity

co =2-Vxu = dxv — dyu (9)

obtained from the solution that has
evolved from this linearly unstable
profile. We see the growth of large
primary and smaller secondary vortex
regions. The secondary regions are a
manifestation of opposite-sign vortex
entrainment and are first clearly seen
in figure 5d. We made a careful com-
parison of the flow at different times
and found that the primary vortices,
which are elliptical in shape, are slowly
"nutating"; this is due to the interac-
tion of the mean flow with the elliptical
vortex regions and has been calculated
quantitatively. This effect was ob-
served, but not recognized, by Sato, and
provided us with a subtile means for
validating the computation. The effect
has since been identified in many
experiments.16

Ron Hardin doubled the wavenum-
ber of the perturbation, and we ob-
served a pattern similar to that shown
in figure 5, except with two of every-
thing per period. The surprise—which
we saw in a computer-generated film
from an overnight run that Hardin
tended—was that this state was also
unstable: After a sufficiently long
time, the nutating, regularly spaced
pattern "broke down" and the regions
of like-signed vorticity merged—that is,
we obtained a wavelength doubling.

When I visited Culham Research
Laboratory in 1973 I found that Jess
Christiansen had developed a computer
code, using the vortex-in-cell algorithm
for the periodic incompressible Euler
equation (that is, equation 8 with
v = 0). We observed similar effects

when we started with a simpler wake-
like initial profile.17 Furthermore, if
two positive and two negative finite-
area vortex regions are placed asym-
metrically in a periodic domain at the
appropriate transverse-to-longitudinal
separation distance (h/l = 0.281), the
flow can be stabilized if the vortex
regions have a sufficiently large area.
This was a surprise, as flows with, point
vortices were known to be unstable.

Very recently, S. Kida, using a per-
turbation analysis, and Daniel Meiron,
Philip SafFman and J. Schatzman, us-
ing a computer model, showed this
stability from a linear point of view.
Furthermore they showed that the flow
is necessarily unstable, no matter what
the area of the vortex regions, if h/l is
far from 0.281 (in the last part of figure
5, for example, h/l is 0.47) or if h/l is
0.281 and the domain of the perturba-
tions is not periodic (so that large-
wavelength subharmonic perturba-
tions can arise). They used a "contour-
dynamica l " algori thm to find
steady-state solutions with piecewise
constant vorticity in an asymmetric
double-row configuration. This wake-
like model was subjected to a linear
perturbation analysis, which was per-
formed on the computer because the
shapes of the steady vortex states
(which I call "V-states") are not well-
known functions. The contour-dynam-
ics representation18 is a generalization
of the "waterbag" model; it is both
computationally efficient and math-
ematically lucid. It reduces the evolu-
tion of two-dimensional inviscid flows
to the movement of contours (or inter-
faces) bounding regions of piecewise-
constant vorticity. Recently Edward
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SECONDARY

Evolution of vortices downstream from a
plate: contour lines of the vorticity to at
various times, from reference 15 (color
added). The periodic boundary conditions
in x let the simulation approximate a
window that moves along with the fluid as it
flows downstream from the plate. The flow
at t = 0 (top) is a harmonically perturbed
Gaussian profile. Eventually, the flow
breaks up into primary (dark) and
secondary (light color) vortex regions of
positive (blue) and negative (red) vorticity.
The horizontal and vertical scales are
different; in the last figure, for example, the
ratio of transverse to longitudinal
distances between vortex centers is 0.47.
Note the nutation of the primary vortex
regions. Figure 5

Overman used an analytical-computa-
tional synergetic analysis to examine
the "limiting" singular properties of
rotating and translating V-states.

Hassan Aref and Eric Siggia contin-
ued the computer-simulation investiga-
tion of the evolution of wake-like struc-
tures with a "vortex-in-cell" code.
They began with separated, symmetri-
cally perturbed positive and negative
vortex sheets. They confirmed the
wake-breakdown results described
above and also found another "breath-
er" mode. That is, if the sheets are
sufficiently close they evolve into a
symmetrical dipolar structures, which
loop away from the x-axis on trajector-
ies of large radius and eventually
return to the axis.

Recently, Glenn Flierl, Paola Rizzoli
and I have used a more accurate
pseudo-spectral code for similar wake
studies, as well as ocean-related jet
studies of models that include Coriolis
terms in the equations of motion.
These can model systems such as the
Gulf stream. We now have a quantita-
tive understanding of the wake flow
phenomena which involve the shape
and thickness of the wake and the
wavelength of the initial small-ampli-
tude perturbation. These insights are
providing us with information for ana-
lytical progress on the formation of
vortical structures in jets and wakes.
However, we still are not sure if this
wavelength-doubling mechanism ac-
counts for Taneda's experimental re-
sults.

In the soliton and vortex studies
there are many apparent missed open-
ings, retreats or diversions. The cre-
ative process is one that Arthur
Koestler has called19 "reculer pour
mieux sauter."

Supersonic jets
While vortices produced by low-speed

flows past bluff bodies are a well-known
and long-studied phenomenon, the
study of supersonic jets is relatively
recent. The earliest studies were car-
ried out at low-supersonic speeds by
Ernst Mach and Peter Salcher in the

1880s and 1890s. High-speed super-
sonic jets have recently become inter-
esting because they may play a role in
explaining some recently discovered
astrophysical phenomena, such as the
jet-like structures with "knots" one
sees associated with some quasars and
radiogalaxies.

Undaunted by the sparsity of de-
tailed experimental information—par-
ticularly for the astrophysical jets—
Michael Norman, Larry Smarr and
Karl-Heinz Winkler have performed20

a detailed numerical simulation to
study the evolution of these structures.
To start, they introduce reasonable
physical simplifications and assume
that the observed phenomena are the
result of nonionized, nonrelativistic
and nonradiative hydrodynamics. Fur-
thermore, because of the present limi-
tations of computer size and speed, they
also assume nonswirling axisymmetric
flow (variables are a function of r, z and
t only). Thus the model consists of the
Euler equations for a compressible
fluid

d, p + V-(pu) = 0
dt(pxx) + V-t/mu) = - Vp + 3>
d, p + V-(pu)

= — {y — l)pV-u+ @

where 3> and 2? have been inserted to
model the effects of dissipation at
discontinuous interfaces (such as
shocks). In the future, these physical
and geometrical constraints will be
relaxed as phenomena are understood
quantitatively and as better agreement
with experiment and observation is
sought. The control of numerical dis-
cretization errors will be a part of this
synergetic approach. Note that, de-
spite these simplifications, the param-
eters for Mach number M of the beam
and the density ratio of beam to am-
bient pb I pm can be made much beyond
those achievable in present-day labora-
tory experiments.

As shown in figure 1 and on the
cover,21 the jet enters the domain
continuously at the left (z = 0) as a
beam of constant density and unit
radius; the undisturbed beam is clearly
seen in figure la as a small, white,
triangular region. The boundary at
r > l , z = 0 allows outflow, to accomo-
date the gas within the "cocoon" or
sheath.

Figures la and lb visualize the beam
at t = 60 (in normalized units). Part a
shows the "divergence" Cblue) and "con-
vergence" (red) of the flowing gas; note
the alternating red and blue x-shaped
regions, which are manifestations of
oblique internal shock waves. Part b
shows high-pressure regions as red and
low-pressure regions as blue; here one
sees the bow shock as a discontinuity in
color (light-green to yellow followed by
a structured high-pressure region in
yellow). Part c is a space-time diagram
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for f = 0 (bottom) to £ = 60 (top) of the
on-axis pressure. Note the coherent
near-periodic (red-yellow) crests of
high pressure, translating to the right
at a speed slightly greater than the bow
shock (green-yellow diagonal). Most
important (perhaps the essential dis-
covery) is the undulating near-periodic
pattern of pressure on the axis, like
colored beads on a necklace. The first
intense-pressure (red) region near the
axis, at the right side of the figure, is
the region of the "working surface"
where the incoming beam fluid is
reversed in direction to form a counter-
flowing "cocoon." The near-periodic
pattern is also evident in part a.
Further back in the cocoon, that is
closer to z = 0, one sees highly distorted
or "shredded" axisymmetric vortical
regions in white. These counterflowing
vortical regions may be responsible for
the x-shaped patterns—it's all a compli-
cated nonlinear feedback process.

When I visited Garching in Novem-
ber 1983 we began to examine the
vortex "shedding" process in the vicini-

Specific vorticity for a supersonic jet continuously moving into a
counterstreaming environment. The contours are for the specific
vorticity a6/p close to the bowshock and working surface of a beam
moving at Mach 6 into an ambient fluid having 10 times the density of
the beam. The times of the plots (in normalized units) are given in the
lower right corners of the plots; the remaining numbers give details
about the numerical values involved in the model. The ambient fluid is
moving to the left at a sufficiently great speed to arrest the beam's
progress. The dashed lines track vortical features as they are
released into the backflow in a quasiperiodic manner. Note the wave-
like modulation of the surface of the beam. (Courtesy of M. L.
Norman, L. L. Smarr and K.-H. A. Winkler.) Figure 6

ty of the working surface. We boosted
the ambient environment slowly from
zero to a uniform leftward translation
and were able to nearly fix the location
of the bow shock in the computational
domain. Figure 6 gives a contour
representation of the specific vorticity
i,cot I p) for a beam at normalized times
29, 30, 31 and 32. This covers a cycle of
a near-periodic vortex shedding event:
We can see the right-most of the
coherent features growing (t = 29 to
t = 30) and detaching between t = 31
and 32, as a new feature begins to grow
at the front of the jet.

We have yet to determine how many
of these space-time features are relat-
ed to the physical assumptions de-
scribed above. However, the quasiper-
iodic behavior we see in the figures may
provide a possible explanation of the
quasiperiodic emission structures ob-
served in extragalactic jets.

Graphics
The benefits of the computational

approach—that is, the heuristic useful-
ness of the computer—clearly depend
on the availability of various graphical
displays. As in a laboratory experi-
ment, one must be alert to recognize
small effects that may signal new
phenomena. The discovery of the slow
oscillation or "nutation" of vortex re-
gions in the plots shown in figure 5 and
the near periodic array of pressure
maxima in figure 1 are clear examples
of the importance of proper graphical
displays. We would never have seen
these behaviors in voluminous print-
outs of columns of numbers. The pic-
ture has clearly produced an insight
into the physics.

As our analytical insight matures,
the character of the graphical repre-
sentation should be focused on particu-
lar events and their interaction. Fer-
mi, Pasta and Ulam plotted waveforms
and modal energies, as shown in figure
2. When it became clear that the
progressive waves with periodic bound-
ary conditions contained the same ef-
fect, we began tracking trajectories of
waveform extrema; this proved infor-
mative, for it allowed us to see phase
shifts arising from localized interac-

tions. Following the trajectories of
extrema turns out to be a generally
useful technique, although the picture
can sometimes be confused by fluctu-
ations, as figure 4 illustrates. I have
generally found that plots of energy
and so forth vs. wavenumber do not
provide information for making deci-
sive progress but complement what has
been learned in configuration (phys-
ical) space.

Oblique isometric projections were
used for nonlinear waves by Robin
Bullough, Chris Eilbeck and Philip
Caudrey at Manchester in the 1970s.
This has now become a ubiquitous
mode of display. It provides a useful
and artistically pleasing global sum-
mary of the nonlinear wave phenom-
ena. It would, for example, be hard to
imagine a clearer representation of the
stability of a soliton than figure 7.

As I have already indicated, color can
greatly enhance the perceptibility of
small but essential details. Note that
color is area-filling, so that color or
gray-scale plots tend to draw the ob-
server's eye to gross structures in the
flow. Contour visualizations, on the
other hand, emphasize details and give
a better feeling for gradients, although
the high density of information may
obscure the essentials. A composite of
both would be extremely useful!

Like color, cine films or real-time
video displays can greatly enhance the
perceptibility of unexpected phenom-
ena. In both cases, the added percep-
tual "dimensions" enhance the mind's
ability to recall important features and
to correlate old and new results.

With the advent of supercomputers,
parallel processors and inexpensive
memory, the computing power avail-
able to scientists and engineers has
been increasing rapidly. However, the
importance of interactive (via touch
and voice), high-resolution color termi-
nals for the perusal of computer-simu-
lation results is just beginning to be
recognized. Expert systems for this
mode of study are in an infant stage.
Robust and facile interactive graphics
software still needs to be developed, to
provide, for example:
• An ability to excise one-, two- or
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Oblique projections of two-soliton interaction. The graph shows
solutions of the nonlinear Schrodinger equation

idx\[i + dt2i/> + Ki(>\tl>\2 = 0 with two initial "sech" pulses. The analytic
solution to this equation were first obtained by V. E. Zakharov and A.

B Shabat, in Sov. Phys. JETP 34, 62 (1972). The figure was produced
for reference 4. Figure 7

three-dimensional regions containing
extrema of some variable, so that we
can easily track these extrema as a
function of time (or some other param-
eter). The resulting diagrams will
probably be "noisy," but informative.
• An ability to make spatial and tem-
poral correlations to obtain the histor-
ies of regions around the extrema.
Such an ability should include capacity
for rotating, displacing, stretching,
smoothing or computing moments of
dependent variables to facilitate com-
parisons.
• An ability to retain important sum-
mary or diagnostic variables in a diary
to enable the investigator to optimize
comparisons and to savor the physical
and analytical essence of the results.

A new modus operandr.
To me it is clear that the examples of

computational synergism I have de-
scribed validate von Neumann's fore-
sight. The soliton concept, for exam-
ple, has given rise to much new
activity410 in pure and applied math-
ematics; it also has provided a new
conceptual basis for applications in
diverse areas of physics, providing an
economy of thought in posing problems
and obtaining solutions. I believe that
computational studies will be as useful
in the future development of nonlinear
science as the accelerators of the past
were for nuclear and particle science.
It is only a historical accident that
supercomputers became available later
than the superaccelerators. An impor-
tant asset of the computational physi-
cist or mathematician is the will to use
the computer resources to the limit
when the algorithms are working and
the physics is puzzling. It was, for
example, a real high to be sitting at
3:00 o'clock one Sunday morning in the
terminal room at the Max Planck
Institute for Astrophysics in Munich
and watch Winkler "fly" his jet calcula-
tions through the Cray-1.

Are we providing the kind of training
in our universities that our students
will need to undertake this style of
work at the nonlinear frontier? I
believe not. We will need to find new
methods for teaching students to exper-

iment with computers the way we now
teach them to experiment with lasers
or cyclotrons.22

Erwin Chargaff, in his review23 of
nucleic-acid research, notes, "It is in
general true of every scientific discov-
ery that the road means more than the
goal. But only the latter appears in
ordinary scientific papers." I have
here tried to show concretely that the
analytical-computational synergetic
approach is a mode of working that is
applicable generally in the natural
sciences. It requires good analysis and
good computation—but it also requires
good graphics and other modes of
computer expression.

Wolfgang Pauli collaborated with
Carl Gustav Jung on an investigation
of psychology and epistomology.24

Among Pauli's contributions was an
analysis of the influence of archetypal
ideas on Kepler's work. He refers to
the importance of images in creative
science:

. . . What is the nature of the bridge
between the sense perceptions and
concepts? All logical thinkers
have arrived at the conclusion that
pure logic is fundamentally in-
capable of constructing such a
link.. . . The process of under-
standing nature as well as the
happiness that man feels . . . in the
conscious realization of new knowl-
edge, seems thus to be based on a
correspondence, a "matching" of
inner images with external objects
and their behavior . . . images
[called by Kepler archetypal—ar-
chetypalis] with strong emotional
content, not thought out, but be-
held, as it were, while being paint-
ed. . . . As ordering operators and
imageformers in the world of sym-
bolic images, the archetypes [or
"primordial images" of Jung] thus
function as the sought-for
bridge. . . .

On the basis of my own experience with
computers, I would paraphrase his
remarks in a contemporary vein by:

The discovery of new knowledge in
the natural sciences is a manifesta-
tion of a "matching"—that is, a
linkage or a resonance—between

data and an image of that knowl-
edge in deeper levels of our cons-
ciousness. A proper picture or
graph in the external domain can
synergize the formation of images
in our "nonconscious" mind and
provide an alternative route for
discovery.

With computers, the intuitive-geomet-
ric approach can be developed, taught
to our students and made part of the
scientists' modus operandi.

# * #
My debt to people and support organizations
was described in reference 4. In recent years
I have benefited from support from the US
Army Research Office and the Naval Re-
search Laboratory. In particular, I wish to
acknowledge Martin D. Kruskal, Gary S.
Deem, Edward A. Overman II, friends and
collaborators over the years. Kruskal s deep
mathematical insights and power with
asymptotic formulations were always an
inspiration. Deem passed away last year and
I recall with pleasure his assistance in the
early phases of the lattice and soliton work
and our later mutual participation in analy-
tical and computational studies of the evolu-
tion of fluid instabilities, vortices and "In-
states" and enzyme membrane transport.
Thomas von Foerster of PHYSICS TODAY pro-
duced the initial version of the manuscript
and assisted with many modifications there-
after. The final version was completed
during my visit to the MIT Department of
Earth, Atmospheric and Planetary Sciences.
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