
MIIIIMIIIIIIIIII

ISOURCE-TO-SOURCEI
IRESTRUCTURER

RESTRUCTURED PROGRAI1
IN NEW OR OLD LANGUAGE

Illlllllll

ICOI1PILERI '.:. EXECUTE

Illlllllll

Program development with automatic
restructuring for concurrent processing. In
the "source-to-source" scheme illustrated
here, an automatic restructurer takes a
user's source program, asks questions,
receives answers and other statements,
and then produces and prints a new source
program, which the user can compile and
execute. The arrow returning to the user
indicates that this program development
process is iterative. Figure 1

i\in

Supercomputers simply need
supercompilers that automatically restructure
programs for concurrent processing.

David J. Kuck and Michael Wolfe

To take full advantage of the ever more
complex architectures of the latest
supercomputers, users are having to
write increasingly intricate programs.
Thus, one of the most pressing ques-
tions associated with the powerful new
concurrent processors is how to make
them practical for ordinary users. In
our opinion, answering this question
means figuring out how to use algor-
ithms, languages and compilers to give
users four crucial capabilities and tools,
namely
• The ability to use old programs, in
old languages, as well as new programs,
in old or new languages.
• New languages that allow one to
express, in a well-structured form, al-
gorithms that are amenable to parallel
processing.
• Software that is able to exploit
effectively all available architectural
features, for use in developing and
compiling programs in old and new
languages.
• Packages and library routines that
provide standard algorithms that are
very amenable to parallel processing.

In this article we discuss the ratio-
nale for these objectives and our strate-
gy for achieving them. We will argue
that the best approach is the construc-
tion of powerful compilers that can
automatically restructure source pro-
grams to exploit a machine's ability to
do many computations concurrently.

Allowing for evolution. The purpose of
the first of the four objectives above is
to allow users to approach new ma-
chines without having to rewrite their
programs in a new style or a new
language. This makes for an easy
transition from an old machine to a
new machine, that is, it provides for
architectural evolution. The ability to
use old languages is probably a neces-
sary condition for the general accep-
tance of a new machine.

The second and third objectives
above, taken together, allow users to
learn a new language or new features
in an old language, especially if the
program-development system can
translate the old language to the new.
This allows for language evolution as
the user moves from familiar programs
to new high-performance programs
that are easier to understand. New
language features are not a sufficient
condition for the success or acceptance
of a new machine.

New languages should permit the
user to make assertions about the
program that allow faster execution.
In fact, the program-development soft-
ware should query the user for such
assertions.

Packages and library routines, men-
tioned in the fourth objective above,
have always been important to comput-
er users. However, as a part of pro-
gram-restructuring techniques, they

may lead to new and powerful pro-
gram-development systems.

What language to use?
Debate over which programming lan-

guage to use has been going on for
many years and will probably continue
indefinitely. In some ways, the discus-
sion of this subject is similar to that of
natural languages. People are biased
by what they understand and grew up
with, but are willing to learn a new
language if their livelihood or interests
depend on it.

Programming languages are, of
course, much simpler and easier to
learn than natural languages. Fur-
thermore, even though a certain pro-
gram has existed in an organization for
many years, its parts may be rewritten
with a frequency that has the effect of a
complete rewrite of the code every few
years. Thus, switching to a new lan-
guage might not seem to be so difficult.

Nevertheless, whereas natural lan-
guages may follow commerce and ideas
across national borders, computer us-
ers need compelling arguments to
change languages. Probably the only

Continued on page 69

David Kuck is professor of computer science
at the University of Illinois at Urbana-Cham-
paign. Michael Wolfe is technical manager at
Kuck & Associates, Inc., in Champaign, Illi-
nois.

0031-9228 / 84 / 0500 67- 05 / $01.00 1984 American Institute of Physics PHYSICS TODAY / MAY 1984 67

two arguments that could effect a
change of language or computer system
are faster computation and easier pro-
gramming. Speed is easy to measure,
but ease of use is somewhat subjective,
and both require the user to invest
substantial time to make a comparison.
Thus, change has been slow to come.

Since its introduction in the late
1950s, FORTRAN has been the estab-
lished programming language of
science and engineering. Just as natu-
ral languages evolve with time, so has
FORTRAN. New definitions were re-
leased in 1966 and 1977, and another,
FORTRAN 8x, is planned for the 1980s.
These have tended to keep the lan-
guage current and to retain users. We
have never argued that FORTRAN is a
good language for supercomputers, but
we are forced to deal with it because of
its dominance.

Computation speedup can come to us-
ers of a given algorithm or program in
two ways, through a new computer
system or through a new optimizing
compiler. Traditionally, increases in
circuit speeds alone produced a steady
flow of faster and faster computers. As
the rate of increase in the speed of the
raw hardware has diminished, new
computer architectures have kept up
the increases in computer speed. How-
ever, as the organization of computers
has become more and more complex,
the effective speed obtained by most
users is a smaller and smaller fraction
of the peak speed of a machine.

If we define efficiency as the ratio of
effective to peak speed, we observe that
such machines as the Cray-1 or Cyber-
205 give most users only about 10%
efficiency through their FORTRAN com-
pilers. Of course, efficiencies of 50% or
higher are possible on some computa-
tions if a user is willing to work hard
enough at rewriting a program. Manu-
facturers have provided FORTRAN ex-
tensions that can lead to higher speeds
if properly used, but it is sometimes
difficult to know how to use the exten-
sions effectively.

Thus, we see that compilers that can
automatically restructure source pro-
grams to exploit a machine's features
more effectively have the potential of
improving performance. We will argue

later that this is one of the key areas in
which a high payoff is possible in the
near future. The alternative of man-
ually restructuring programs to
achieve high performance, while often
effective, violates all definitions of
"ease of use."

The ease of use of a programming
language has many aspects and is
certainly much harder to measure than
computation speed. Computer scien-
tists and users have introduced many
new languages and many new pro-
gramming styles, all of which have as
advertised features "ease of use" in one
sense or another. Ease of use applies to
such activities as writing a program,
debugging a program and moving a
program to another machine. The
existence of a large user community
contributes greatly to ease of use, as
does the support of the software by a
large number of machine manufac-
turers.

One reason why this subject has led
to so much emotional discussion over
such a long period of time is simply that
it has so many countervailing aspects.
For example, few people would argue
that FORTRAN is one of the easier
languages in which to write a new
program, but on the other hand, be-
cause of its simplicity and established
position, FORTRAN'S portability is rela-
tively good.

Computer-science journals are filled
with hundreds of language definitions
and extensions that are demonstrably
"better" than FORTRAN in some way.
Most have never made it beyond a
small cult of users for one reason or
another. One of the most famous is
APL, which has very powerful expres-
sive powers, still has a very vigorous
following, and has enjoyed a number of
implementations. Yet, lacking any-
thing near "major" use after nearly
twenty years, it will probably always
remain in that position.

There is no simple explanation for
this. All of the factors in the definition
of "ease of use" are involved. Probably
the most important are endorsement
by a number of major manufacturers
(which is difficult to obtain) and porta-
bility, which seems to explain the
success of the language PASCAL and the
operating system UNIX far better than
does their superiority of conception.

Program-development systems

Assuming a user has a good algo-
rithm to solve a problem on some
machine, the remaining problem is to
obtain high performance as easily as
possible. A good programming envi-
ronment is essential for this and should
include a good programming language,
a powerful editor, compiler and debug-
ger, as well as a rich library of applica-
tion packages. Using these tools, a
programmer can quickly and painless-

ly transform an algorithm into a good
program. We feel that the choice of
language is much less important than
the rest of the environment.

The program-development system
must also be able to restructure a
program, that is, transform it into a
form more suitable for the target ma-
chine. Restructuring can be done in
the compiler, or on a "source-to-source"
basis, producing an updated source
program for the user to maintain.

The TAMPR system at Argonne Na-
tional Laboratory has successfully tai-
lored individual source programs to
different machines or to several appli-
cations. It can, for example, change
program arithmetic from complex to
real, or change the array storage mech-
anism from packed storage to full array
storage. The Gibbs Project at Cornell
University is a more ambitious pro-
gram-development system, targeted
specifically at providing physicists with
a rich programming environment.

We see program development as an
iterative process, as figure 1 indicates.
The user enters a program into the
program-development system, which
analyzes it and possibly restructures it
for the target machine. The system can
query the user to get additional infor-
mation that can lead to an optimization
of the program. Finally, the program
can be compiled and tested.

Because program restructuring can
deliver enormous payoffs, and because
the necessary transformations are es-
sentially independent of programming
languages, we will stress restructuring
here. We will not argue for or against
any particular language, leaving that
to the user's taste. We will, however,
argue very strongly for powerful pro-
gram restructurers, and we will illus-
trate our discussion with FORTRAN-like
examples. We have demonstrated that
restructuring FORTRAN programs to ex-
ploit today's supercomputers can be
done effectively. Languages that show
parallelism explicitly may simplify the
analysis of programs for parallel
processors, but will probably not
change the difficulty of optimizing a
program to exploit a particular archi-
tecture.

Power of program restructuring

The simple program of figure 2a will
help us illustrate some techniques for
restructuring. We will first see how to
analyze a program to expose its poten-
tial for parallel processing in a way
independent of the target machine.
One can use the results of this analysis
to transform the program further to
exploit a particular architecture.

Observe that the scalar on the left-
hand side of the first assignment state-
ment must be expanded to an array to
prevent an "assignment bottleneck";
this is done in a reversible way. Figure

PHYSICS TODAY / MAY 1984 69

i\in

2b shows the result of this transforma-
tion, and also the program's "depen-
dence graph." Nodes in the depen-
dence graph correspond to statements;
arcs extend from the generation of a
variable to its use; brackets show loops.
(Also see figure 3.)

We can discover the program's ame-
nability to parallel processing from the
dependence graph, and we can use this
information to restructure the pro-
gram to get the best performance on
the target machine. The restructurer
is built to characterize the target ma-
chine and to decide how to transform
the program based on answers to the
following questions:
• What is the architecture of the
machine? Two examples are vector
instruction machines and multiproces-
sor machines.
• Are the operands held in memory or
registers? The CDC Cyber-205 holds
the vector operands in memory, while
the Cray-1 uses vector registers.
• Do irregular array accesses incur
any penalty? On the Cyber-205, array
references that are not "stride-1," that
is, array references that do not access
consecutive array elements, must be
gathered with a separate vector in-
struction. On the Cray-1, array refer-
ences with a fixed stride do not slow the
machine down unless the stride is a
multiple of 8; however, indexed array
references, A[IP[I]] for example, cannot
be done in a vector way.
• What is the overhead? On the
Cyber-205, a vector instruction has a
large startup time. Hence, one wants
to use vectors with a large number of
components to amortize the startup
time. On the Cray-1, vector startup
times are smaller, so small vectors are
not as detrimental to performance.

Now we will restructure our example
program in several ways. For a mem-
ory-to-memory target machine like the
Cyber-205, we might distribute and
interchange the loops as in figure 2c.
Vectorizing the DO I loops over the
statements for T and Z gives the largest
vectors, reducing the vector startup
overhead. Notice also that we re-
ordered the statements so as to reduce
the serial loop overhead. The depen-
dence cycle in the statement for D is

satisfied by executing the DO I loop
serially, and the DO J loop can be
vectorized. Now we can generate code,
as shown in figure 2d. The notation
here means that in the first statement,
vectors B[*,J] and C[*,J] of length 300
(all elements denoted by *) are added
and assigned to vector T[*,J], and so on.
If the arrays B, C, Z and K are all
dimensioned [300,80], then the first
loop may be "collapsed" into one long
vector operation, eliminating the prob-
lem of multiple startup times.

If the arrays are stored as columns,
this restructuring scheme might not
execute very well on a real Cyber-205,
because the array accesses in the sec-
ond loop would require a separate
"gather" instruction. Figure 2e shows
a better choice. Here the temporary
array T has been partially shrunk,
because both dimensions are not neces-
sary. The second statement must now
be executed as a vector sum reduction,
and the Cyber-205 does have such an
instruction. Code generation would
now produce what we see in figure 2f.

For a vector-register machine such as
the Cray-1, the restructuring decisions
would be quite different. The Cray
loads 64 elements of each array into
registers and operates on the registers.
Since the load instruction slows down
for array strides that are multiples of 8,
accessing in the "I" direction in an
array could cause problems, because it
would lead to strides of length 80 if the
arrays were stored as rows.

Finally, suppose we have a multi-
processor architecture. Now we want
the parallel loop of figure 2b on the
outside, with scalar computation in-
side. Scheduling becomes a problem
and we want to match the outer loop to
the number of processors available as
well as possible. In a machine with 80
processors we would want to inter-
change the loops. For a machine with
60 processors we would block the outer
loop as shown in figure 2g. The instruc-
tion doacr (do-across) denotes a loop
that assigns its iterations to processors
indexed by proc. Thus processor 1
executes iterations 1, 61, 121, . . . , pro-
cessor 2 executes iterations 2, 62,
122, . . . , and so on. In some cases
alternate processor assignments are
preferable, and we must generally be
concerned about data movement and
synchronization time in multiproces-
sors.

It should be clear that even simple
programs lead to a number of complex-
ities in restructuring for compilation.
Few humans can do this as well as a
powerful program restructurer.

Various studies1 have assessed the
effectiveness of automatic restructur-
ing. It is generally believed that the
Cray-1 and Cyber-205 can achieve fac-
tors of two or four over scalar perfor-
mance for programs that yield to the

2a
do I = 1/300
do J = 1,80
T = 3[I,J] + CCI,J]
DCJ] = OCJ] » T • a[I,JJ

2d
do J * 1,80

C',JJ = V«0D(a[.,J3, C[',J], J00
ZC*,J] = VAOOt TC*,J], K>,J3, 300)

do I = 1,300
0C«3 = V4DDC DC-],

VMPY(ICI,.], «[!,.], 30) , 80)

PHYSICS TODAY / MAY 1984 71

Nil

automatic vectorizers of these ma-
chines. Such factors are substantial—a
new computer system providing such
speedups would be regarded as a major
step forward.

Neither the Cray nor the CDC vector-
izers are nearly as powerful as the best
vectorizers that could be written for
those machines. Clifford N. Arnold
demonstrated2 this in a study of the
"Livermore loops," 18 very simple FOR-
TRAN loops developed at Livermore to
compare the speeds of supercomputers.
Four of the loops ran more than five
times faster on the Cyber-205 after use
of a vectorizer known as the "KAP," as
compared to the standard CDC compil-
er. The KAP, our own commercial
product, is an outgrowth of the "Para-
frase" system at the University of
Illinois. Recent Parafrase experiments
with automatic restructuring and man-
ual algorithm change on larger pro-
grams are summarized in reference 3.

More recently, a test showed4 that
the Fujitsu VP200 compiler is able to
vectorize more loops than the Cray CFT

SUBROUTINE CALC

51 = X + Y

52 = X - Y

53 = X • Y

IF (SI + S2 ,GT, S3)

GOTO 100

Do 50 I = 1,N

Ad) = SI +8(1)

Bd) = S2 + S3

50 CONTINUE

GOTO 999

100 S = 0

Do 150 I = 1,N

S = S + A d)
150 CONTINUE
999 RETURN

Dependence graph, showing how lines in
a computer program (aboveright) depend on
each other because of the flow of data in
the program. The flow of control in a
program—indicated by statements such as
GO TO, IF and DO—is not relevant in
making up a dependence graph. A
dependence graph is an intermediate step
in decomposing a problem for concurrent
processing. Figure 3

1.11 compiler. The test consisted of
runs on both machines of three bench-
marks that contained 33, 73 and 88
loops, respectively. The Cray compiler
vectorized 11, 42 and 58 loops in the
three benchmarks, respectively, while
the Fujitsu compiler vectorized 19, 51
and 64 loops.

Neither the Cray nor the CDC com-
pilers can interchange loops, vectorize
loops containing IF statements, or vec-
torize parts of loops while leaving the
rest serial, for example. Both the KAP
and the Fujitsu compiler can do such
transformations.

Assertions

A restructurer often needs more
information than is present in a FOR-
TRAN-like source program. For in-
stance, the loop in figure 4a can be
vectorized if M is greater than or equal
to zero, but not if M is negative. The
program gives no information about
the sign of M. A powerful restructurer
will be able to accept such information
from the programmer in the form of
assertions, as in figure 4b. Assertions
may be tested at run time; invalid
assertions would cause an ASSERT-
ERROR. Some assertions, like the one
in figure 4c, would require a nontrivial
validation test, which might be done
while the program is being debugged.
Some information similar to that given
in assertions can be derived from the
source program itself. For example, if
the program in figure 4a were preceded
by the statement IF M>0 THEN, the
restructurer would gain as much infor-
mation as it does from the assertion in
figure 4b.

The restructurer can use assertions
of the sort discussed above to improve
the quality of the dependence graph
and expose more opportunities for par-
allel processing. There is another
broad class of assertions that the res-
tructurer can use to make optimization
choices, that is, decisions between two
or more equally valid ways to generate
code for a given program. Such choices
are made on the basis of run-time
probabilities. In this class of assertions
are statements about loop length or
branching frequencies. In figure 4d,
for example, if the programmer knows
that N will be much larger than M, then
the restructurer can use this informa-
tion to decide to interchange the loops
and vectorize the DO I loop to get a
longer vector, instead of simply vector-
izing the DO J loop. Assertions used to
make optimization choices need not be
validated, because an incorrect asser-
tion will not make the compiler gener-
ate incorrect code. However, the pro-
gram may execute more slowly, so
validation is desirable.

When, for whatever reason, the res-
tructurer wants more information
about the program, it can put queries to

the user. The biggest problem is phras-
ing the query in terms of the original
program.

When assertion information is not
available, there are still several ways to
restructure the program. In the ab-
sence of information on dependence,
the most obvious action is to make a
conservative choice—assume depen-
dence unless nondependence can be
proved. Where the decisions depend on
the data, a useful directive to the
restructurer is to produce two versions
of the program and choose at run-time
which version to execute. For example,
a programmer who does not know the
sign of M in figure 4a, but thinks that M
will be greater than or equal to zero
often enough to single out that case,
might simply preceed the program with
the directive COMPILE WITH M >= 0
AND M <0. Then, two versions of the
loop will be compiled, one vectorizable
and the other an arithmetic recur-
rence. Only one source loop would
need to be maintained, but the best
performance could still be expected.

Automatic algorithm change
Currently we can automatically

change small algorithms in programs
to make them better suited to certain
machine architectures. For example,
first-order linear recurrences can easi-
ly be compiled using appropriate fast
recurrence solvers. This algorithm
change inserts a new algorithm that
may be far beyond the understanding
of the user in terms of parallel think-
ing. It may also have numerical prop-
erties that are different from the origi-
nal program. But it can achieve

assart M > 0
do I = 1* N

ecn • ccn

do I = 1,N
do J = 1/M
A C J / 1 3 = B C J / I] * C C J * I J

e n d d o
e n d d o

Nil

substantial speedups in sections of the
program where it is used. As another
example, a program restructurer can
"recognize" the computation being
done; for instance, it might identify
particular recurrences as inner pro-
ducts.

Pattern matching can lead to other
kinds of algorithm change. Generally,
nonlinear recurrences are very diffi-
cult to speed up. However, one can
handle certain numerical nonlinear
recurrences by appropriate changes of
variables, and one can tabulate other
nonlinear recurrences for use when-
ever an appropriate pattern occurs.
Similar techniques work for seminu-
merical nonlinear recurrences. For
example, finding the index and magni-
tude of the maximum element of an
array can be done rapidly on many
architectures, and pattern matching
can recognize such computations in
source programs.

The notion of "recognizing" what a
program is doing could be a useful one.
If we can recognize an inner product,
then we can certainly recognize a
matrix multiplication or a partitioned
matrix multiplication. Of course, there
are limits to this; it would not be
difficult to write a matrix multiplica-
tion program that would defy recogni-
tion by any program (and most hu-
mans!). However, most users write
fairly straightforward programs. We
can put these programs into a canoni-
cal form, from which recognizing what
the algorithm is doing may not be
difficult.

Suppose we were able to do this for
much of linear algebra. There might
be half a dozen distinct types of linear
system solvers that are frequently
used, as well as a dozen obscure ones.
Assume a user writes a linear system
solver on a serial machine for matrices
of some very special type and wants to
run it on a supercomputer. The system
we propose would be able to recognize
(perhaps after asking some questions)
that the program is a linear system
solver with certain variations. If the
user's algorithm were based on Gaus-
sian elimination with partial pivoting,
and it performed poorly on the super-
computer of choice because of the

column-access, the system would select
Gaussian elimination with pairwise
pivoting, insert the code variation, and
inform the user of the result to check
whether the numerical accuracy is
acceptable. If a user wrote a Gaussian
elimination program to work on band-
ed matrices, the system would recog-
nize the algorithm and ask whether the
problems to be solved were well-condi-
tioned. If the user responded "no, ill-
conditioned," the system would replace
the program with a Given's solver,
properly indexed for banded systems.

If such an approach were possible in
one area, it would probably be possible
in other areas. We feel that because we
already change small algorithms auto-
matically, we should be able to do the
same with certain larger algorithms. It
also seems clear that if users are able to
interact with the system, the range of
successful application will be broad-
ened significantly.

The powerful, interactive program
restructurers that we have argued for
can be very useful in moving programs
to new machines or getting more per-
formance from existing machines. It is
clear that a powerful restructurer can
make tradeoffs better than most users

can, simply because modern supercom-
puters are so complex. A side-effect of
using a powerful interactive restruc-
turer should be that users will learn,
from the kinds of decisions the system
makes, more about how to use the
machine effectively.

Our work is supported in part by National
Science Foundation grant NSF MCS81-
00512, by US Department of Energy contract
DOE DE-AC02-ER10822 and by Kuck &
Associates, Inc.

References

1. R. Kuhn, D. Padua, eds., Tutorial on Par-
allel Processing, IEEE Computer Society
Press, Silver Spring, Maryland (August
1981).

2. C. N. Arnold, ICPP Proc. (1982), page 235.
3. D. J. Kuck, "Supercomputer Prospec-

tives," Invited Paper for the 4th Jerusa-
lem Conference on Information Technol-
ogy, IEEE Computer Society Press, Silver
Spring, Maryland (May 1984).

4. R. Mendez, SIAM News, March 1984.
5. D. J. Kuck, The Structure of Computers

and Computations, vol. 1, Wiley, New
York (1978).

6. D. D. Gajski, D. A. Padua, D. J. Kuck, R.
H. Kuhn, Computer 15, 58 (1982). •

Response to McGraw

We have no argument with the develop-
ment of new languages, such as functional
languages. However, a language whose
key advantages are "in what they [pro-
grammers] cannot do" will find resistance
in the realm of high-speed computing. For
example, McGraw states that the second
program loop on page 72 is not program-
mable in a concurrent way in any applica-
tive language. If this were the key loop in a
program, the programmer would want to
be able to optimize its performance. Pro-
grammers simply will not use languages
that do not allow them to get the perfor-
mance they require.

Our second point is philosophical.
McGraw states that "Effective use of multi-
processors depends heavily on a user's
ability to program algorithms that contain
large amounts of concurrency." We agree
that an inappropriate algorithm will perform
poorly on a multiprocessor. However, we
feel that automatic restructuring is an im-
portant technique for developing new pro-
grams for any supercomputer. In addition,
we feel that the language should be suited
to the application, rather that to some
machine or model of execution.

We are not saying that FORTRAN is the
best language for any application—we
have never said that it is. The restructuring
we propose is independent of language.
Certainly, dealing with problems such as
COMMON blocks makes FORTRAN one
of the hardest languages to restructure.
McGraw blasts FORTRAN because of the
"aliasing" problems of COMMON blocks,
parameters and pointers in the FORTRAN

extensions used at Livermore. In fact, any
program that depends on "aliasing" is an
illegal FORTRAN program, according to
section 15.9.3.6 of the FORTRAN 77 stan-
dard. Any language that allows separate
compilation will have similar problems
when programmers use their knowledge of
the implementation—in this case, their
knowledge that parameters are passed by
reference—to do illegal things. With re-
gard to pointers, we have spoken to users
of the FORTRAN extension at Livermore.
We find that they use pointers as a way to
perform dynamic array allocation, but that
they use them in well-structured ways that
would allow program restructurers to deal
with the majority of cases and get good
performance.

Our previous criticism6 to which McGraw
is reacting was aimed at the traditional
data-flow computer design philosophies,
about which we are still pessimistic, re-
gardless of the languages that might be
involved. We believe that language and
architecture designs must each be able to
stand on their own. Unfortunately, it
seems that many people embrace the
data-flow philosophy because they are
ignorant of the power of automatic pro-
gram restructuring and become convinced
that restricted languages or programming
styles are necessary to achieve high-
speed computation. It should be realized
that it is possible to compile FORTRAN for a
data-flow machine and that it is possible to
compile VAL or ID for a multiprocessor
such as the University of Illinois Cedar
system. —DJK&MW

PHYSICS TODAY / MAY 1984 75

