
A debate: Retire FORTRAN?

New applicative languages, based on
mathematical functions rather than FORTRAN-like statements, will enhance
our ability to decompose problems for concurrent processing.

James R. McGraw

What role can programming languages
play in our continuing efforts for high-
speed computation, and what role
should they play? The overwhelming
majority of high-speed computing is
now done in FORTRAN on large vector
machines such as the Cray 1 and the
CDC Cyber 205. While the exact na-
ture of future supercomputers is un-
clear, by almost all indications they
will be multiprocessors. Conservative
plans would link on the order of 64
processors, while more aggressive ap-
proaches, such as the "data flow"
strategy, would link several thousand
processors. In either case, the goal is to
arrange each program to use as many
processors as needed to complete execu-
tion in the shortest amount of time. To
what extent can languages and their
associated compilers assist us in reach-
ing this goal?

Three different options have received
the most attention to date.
• We can stay with FORTRAN and
invest all energy in better compilation
and optimization techniques for map-
ping programs onto the new multi-
processors.
• We can extend FORTRAN or some
similar language by adding explicit
features for describing concurrency
and controlling interactions. Concur-
rency here means any form of simulta-
neous program activity.
• We can define a new language hav-

ing its features designed around the
concept of providing concurrency in
clear and "safe" ways.

David Kuck and his colleagues at the
University of Illinois seem to favor1 the
first option. From an organizational
and political standpoint this option is
quite attractive because of the current
investment in software written in FOR-
TRAN. The second option removes some
of the burden for finding concurrency
from the compiler and gives it to the
programmers to manage. Unfortu-
nately, almost every proposed exten-
sion would also allow programmers to
write programs that introduce time-
dependent errors, which are often in-
sidiously difficult to eliminate. Those
who do research in "applicative" lan-
guages favor the third option. Applica-
tive languages express calculations as
mathematical functions. In FORTRAN,
"N = N + 1" is a well-defined state-
ment, even though it is not meant to be
interpreted as a mathematical equa-
tion. Restricting programs to contain
only mathematical functions enhances
our ability to identify and exploit
concurrency.

Our basic position can be summar-
ized as follows:
• Programs for multiprocessors
should clearly express concurrency and
at the same time ensure determinate
execution, that is, execution that gives
the same results every time, even

though the order of execution may
vary. Compilers should be responsible
for identifying concurrency appropri-
ate to a particular architecture.
• Continued use of FORTRAN by pro-
grammers will limit their capacity to
express algorithms that contain large
amounts of concurrency. Also, FOR-
TRAN compilers have significant limita-
tions in their ability to identify concur-
rency.
• Applicative languages23 allow pro-
grammers to express concurrency with-
out introducing synchronization prob-
lems that could otherwise lead to
indeterminate behavior. In addition,
compilers for these languages have far
better information on potential concur-
rency.

FORTRAN and other memory-based
languages fail to assist programmers in
expressing concurrency. Kuck has
shown that it is possible to analyze
programs not originally intended for
parallel processors and find concur-
rency. However, the analysis can only
approximate the concurrency available
in a basically sequential algorithm.

In contrast, applicative languages
suggest a frame of mind for allowing
programmers to reason with and ex-
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press concurrency. These languages
have a model of execution that empha-
sizes concurrency and introduces se-
quencing when it is necessary to satisfy
data dependencies. Programmers can
write and test programs with confi-
dence that the results are repeatable.
And most important, compilers have
more precise information on what data
dependencies exist in each program.
Applicative languages present algor-
ithms at a higher level of abstraction,
which allows compilers more flexibility
to optimize performance for a variety of
computer architectures.

In the discussion that follows, I will
lay out my criteria for evaluating the
various language options for high-
speed computing. Then I will examine
the approach advocated by Kuck and
highlight the major drawbacks to
staying with FORTRAN. Finally, I will
examine the work in applicative lan-
guages, presenting the primary advan-
tages of this option and detailing areas
where continued research is necessary.
Part of my discussion refers to a 1982
paper4 by David Gajski, David Padua,
David Kuck and Robert Kuhn. That
paper examines, among other topics,
research in applicative languages, and
it is quite thoughtfully done. The
paper does, however, contain several
inaccuracies, which I will attempt to
identify and correct.

Role of the language and compiler

Simply stated, a language and its
associated compiler are the interface
between the user of a computer system
and the underlying architecture of the
machine. Assuming the architecture is
based on some form of multiprocessor,
what characteristics make for a good
language interface? I suggest two key
factors:
• the ease with which a user can safely
express an algorithm's concurrency
• the ease with which a compiler can
exploit the available concurrency on a
machine.

Effective use of multiprocessors de-
pends heavily on a user's ability to
program algorithms that contain large
amounts of concurrency. No amount of
program analysis will transform a basi-
cally sequential algorithm into a differ-

ent, parallel one. An inadequate pro-
gramming language may interfere
with a user's ability to express the most
appropriate algorithms. As a simple
example, recursion provides a mecha-
nism for implementing divide-and-con-
quer algorithms, many of which are
highly parallel and extremely fast.
Will programmers take advantage of
divide-and-conquer concurrency, if the
language they are given does not sup-
port recursion? I think not.

Within the goal of expressing concur-
rency is the issue of determinism, or
"program safety." Should a language
definition guarantee that a program's
behavior is repeatable? Most current
language implementations for applica-
tions programming try to ensure re-
peatability, which is fundamental to
many of the debugging schemes applied
to erroneous programs. It is generally
accepted that testing a program with
different sets of data is insufficient to
convince people that a program is
correct. However, indeterminacy adds
a new dimension to the problem be-
cause rerunning a program with the
same data may produce different re-
sults. Hence, determinate behavior
should be a high priority in a language
designed for concurrency.

Once a program has been written, all
agree that a language's compiler must
fully exploit the types of concurrency
available in the architecture. The diffi-
culty of this problem depends heavily
on the nature of the target machine.
Compiling for a 64-processor system
with global shared memory and compil-
ing for a data-flow system with 1000
processors are totally different prob-
lems. In a data-flow computer, the
machine represents a program as a
graph. Nodes represent operations,
and arcs represent data. Each piece of
data in the program carries with it the
addresses of all operations that need it.
The execution rule for each node is
simply to execute the operation on any
processor after all inputs for the oper-
ation are available. Communication
costs, exploitable levels of concurrency,
available forms of synchronization—all
of these machine factors contribute to
the tradeoffs that a compiler must
make.

This article cannot thoroughly treat
all compilation strategies, but a few
key observations deserve mention. Be-
fore a compiler can map concurrency
onto a system, it must first identify that
concurrency in the program—it cannot
exploit concurrency that it cannot find.
Also, experience has shown that ex-
ploiting concurrency almost always in-
volves making tradeoffs with other
objectives, such as minimizing the total
number of instructions executed, or
minimizing memory usage. In particu-
lar, simultaneous program activity ap-
pears to make significantly heavier
demands for memory than does sequen-
tial program activity. Gajski and his
colleagues correctly point out4 that
data-flow systems and functional lan-
guage semantics "deny the program-
mer direct control of memory alloca-
tion." And yet almost all of the
transformations that their paper men-
tions—scalar renaming, scalar expan-
sion and node splitting, for example—
introduce extra memory that the pro-
grammers cannot see or control. Such
loss of control is likely to be present in
any optimizing system.

Drawbacks of FORTRAN
Because FORTRAN provides no lan-

guage support for expressing concur-
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rency, the user has few options for
representing it in a program. Pro-
grammers need more control of concur-
rency. Employing FORTRAN for concur-
rent processing puts all of the emphasis
on translation; success depends entire-
ly on the ability of the compiler to
identify and exploit concurrency. In
this regard, Kuck and his colleagues
are to be commended for the degree to
which they have succeeded.1 These
results notwithstanding, the general
approach still suffers from some ser-
ious problems.

The major problem is simply detect-
ing parallelism in FORTRAN programs.
Two operations can proceed simulta-
neously if and only if their results do
not depend upon each other either
directly or indirectly. If the compiler
cannot be absolutely certain, it must be
conservative and sequence the opera-
tions in the order specified in the
program. The difficulty in being cer-
tain is inherent in FORTRAN and all
other languages based on explicit as-
signment of values to memory cells.

A very simple example illustrates
the problem. Consider the following
segment of FORTRAN code:

A(I) = G(X)
A(J) = H(Y)

Can the two function calls G and H
proceed simultaneously? You cannot
answer this question without looking at
the procedure bodies for G and H.
These two functions may share many
variables through the FORTRAN state-
ment COMMON. If either function call
modifies one of the common variables,
then the functions almost certainly
need to be sequenced.

Even if the two functions do not
share any COMMON blocks, problems
may still arise through the parameters.
Assume the function calls G and H both
modify their own input parameters X
and Y. That does not look like a
problem because X and Y are different
names. But do they represent different
objects? They could be formal param-
eters in the current environment, in
which case we need to determine
whether any calls to this environment
bind the same objects to X and Y. If X
and Y can be "aliases" for the same

object, we have a problem. For that
matter, if any combination of X, Y, I, J
and A can ever be aliases for the same
object, we have a problem. The algo-
rithm for determining all aliases with-
in a given program requires use of
"global flow analysis," an extremely
expensive calculation.

To date, Kuck's efforts have focused
on finding concurrency inside loops.
His system understands several very
important forms of concurrent loop
processing and recognizes programs
that can use these forms of concur-
rency. The two primary forms are fully
parallel loops, in which all passes can
proceed simultaneously, and wave-
front-parallel loops, in which all loop
passes may execute simultaneously, as
long as each pass remains some fixed
set of instructions behind its "predeces-
sor" pass in the original program. One
can exploit these forms of concurrency
when a given loop has certain struc-
tural properties. To enhance possibili-
ties for having these properties, Kuck
defines various program transforma-
tions that can reduce possible conflicts
between aliased names. Although this
strategy can work on many programs
that have the "right" structure, it
cannot resolve the alias problems men-
tioned above.

Ultimately, then, the effectiveness of
FORTRAN analysis comes down to one
key question: How well will analysis do
on the existing practical programs that
users will want to execute on multi-
processors? Kuck has worked hard to
collect a very large number of sample
programs from various sources. On
these programs his approach apparent-
ly works quite well. No one can speak
for all potential users, but I can share
some insight about the nature of com-
puting at one important site, Lawrence
Livermore National Laboratory. Here,
most programs are written in an "ex-
tended" FORTRAN. These programs
routinely use array subscripts that
access words of memory beyond the
declared scope of the array! In this
context it is often impossible to deter-
mine when two different array accesses
refer to the same object because a
subscript can be used as a pointer to
access words anywhere in memory.

Two heavily used extensions at Liver-
more are absolute memory addressing
and in-line assembly language pro-
gramming. When either of these op-
tions is used, almost all hope for
successful analysis is lost. These exten-
sions permeate programs at Livermore,
and without extensive rewriting, FOR-
TRAN analysis will fail. Any programs
that "abuse" FORTRAN, by going beyond
array bounds, for example, are likely to
suffer a similar fate. This type of
difficulty weakens a primary motive
for staying with FORTRAN, namely, be-
ing able to use existing programs with-
out rewriting.

Applicative languages

If programmers are ever to give up
FORTRAN, the successor must offer some
overwhelming advantages. No one in
the applicative-language or data-flow
community is suggesting that the re-
placement language has been found.
Twenty-five years of intense effort on
FORTRAN cannot be casually brushed
aside. Computer scientists have only
begun to give significant attention to
applicative languages. The five or six
years of research has been exploratory
and diverse; even data-flow experts are
divided on the best ways to proceed. It
is, however, fair to ask what the re-
search has accomplished so far, and
what basis there is for our belief in
what this approach can accomplish in
the future.

One criterion for evaluating lan-
guages concerns their expressive abi-
lity. In this regard, I believe applica-
tive languages make three major
contributions. First, they make con-
currency the general "rule" of execu-
tion, and introduce sequencing only
when necessary to satisfy data depen-
dencies. Second, they allow us to ex-
ploit easily some powerful language
design options that can reduce pro-
gramming time and program size.
Third, they ensure that all interactions
between concurrent program compo-
nents are expressed determinately, or,
if some indeterminacy is allowed, that
it is confined to very-well-identified
modules. Because even erroneous pro-
grams are determinate, programmers
have the opportunity to find and cor-
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rect their mistakes.

In applicative languages, much of the
expressible concurrency derives from
one source—simultaneous evaluation
of all inputs to a function. In an
applicative language every executable
action is a mathematical function, and
many functions simultaneously can be
in the process of evaluating their in-
puts. There are two different ways a
language can take advantage of this
basic source of concurrency: the data-
driven scheme5 and the demand-driven
scheme.6 In a data-driven scheme,
each function "waits" for all of its
inputs to be calculated. When all
inputs are available, a processor com-
putes the function and sends the re-
sults to those functions needing them.
In a demand-driven scheme, each func-
tion waits for some later function to
request its results. When such a re-
quest arrives, a processor requests all of
the function's inputs, thus initiating
more simultaneous work. After the
inputs arrive, a processor again com-
putes and passes on the results. Both of
these schemes are carried out in a way
that does not require processors to wait
idly for the function's inputs to arrive.
The processors are always available to
do useful work elsewhere in the pro-
gram.

Furthermore, both schemes stress
concurrency as the default mode of
execution and impose sequencing only
when required to do so by dependencies
among the data. Unlike FORTRAN, ap-
plicative languages have no concept of
step-by-step execution. Each function
operates autonomously and executes
when all inputs have been computed.
Therefore, opportunities for concur-
rency arise naturally at all levels of
program structure—from highest-level
function calls to independent iterations
of a loop to primitive operations such as
addition. In the case of sequencing,
which occurs only when one function
requires the results produced by an-
other function, the data dependency
between the two functions will cause
the consumer to wait for the producer
to finish. But this sequencing is exactly
the sequencing imposed by the algo-
rithm.

A second basic source of concurrency

allows applicative languages to reduce
even the sequencing normally created
by data dependencies. Consider a sim-
ple dependency situation where a pro-
ducer function must build an array to
be used by a consumer. Although the
array is described as one logical unit,
we may be able to treat each element of
the array as a separate data depen-
dency. The consumer may then begin
to use elements of the array before the
entire array has been produced. This
form of concurrency is called nonstrict-
ness.

In a short article, it is difficult to
illustrate why applicative languages
allow the expression of such general
forms of concurrency. The key factor
in languages is not in what program-
mers can do, but in what they cannot
do. Every operation in an applicative
language must be expressed as a pure
function. The function must identify
all necessary inputs and not modify
them. The only effect that a function

can have is to produce some result
value or values. These results must be
determinate. This restricted program-
ming environment is the principal
"price" extracted from users. Un-
doubtedly, for many traditional pro-
grammers this price would appear to be
quite high. However, our experience
shows that it is not that difficult to
teach this new style. Furthermore, a
programmer does not lose the ability to
express algorithms by using an applica-
tive language.

In a recent paper,7 David Turner
illustrated the power and "semantic
elegance" of applicative languages. He
used recursion and set abstraction to
enumerate without repetition all possi-
ble paraffin molecules, in increasing
order of size. Determining when two
seemingly different molecules were ac-
tually different orientations of the
same molecule was a major portion of
the problem. Turner concluded that
using an applicative language signifi-
cantly reduced the time needed to
produce a correct solution, and by using
a few optimizations he arrived at a
relatively efficient implementation.

Expressiveness also includes safety.
How much should a language try to
protect a programmer from time-de-
pendent execution behavior? An ex-
ample from Gajski's group highlights
this issue. Consider these two doubly-
nested FORTRAN loops:

DO 11 l = 1,N (loop 1)
DO 11 J = 1,N

11 A(I,J) = A ( I - 1 , J ) + A( I , J -1 )

DO 22 l = 1,N (loop 2)
DO 22 J = 1,N

22 A ( I , J ) = A ( l - W ( K ) , J )
+ A( I ,J -W(K))

Loop 1 can be executed using wavefront
parallelism, a fact that a compiler can
recognize. However, in loop 2 a compil-
er will be unable to determine whether
or not the wavefront parallelism can be
exploited:

Parallel execution is possible in
cases like the program in [loop 2],
but only through explicit parallel-
ism. The programmer might know
that W(K) is always less than some
small value and therefore know
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that the wavefront algorithm can
be applied successfully.4

These two program segments are
significantly different in that in the
latter case wavefront processing is safe
only because the "programmer might
know" a condition that cannot be
verified. If the programmer asserts
that wavefront parallelism is safe, he
may do so incorrectly. Compilation
may produce an indeterminate pro-
gram. The original programmer may
be right, but a later program change
might alter the crucial property. What
happens then? The view taken in
applicative languages is that all paral-
lelism should be expressed in a manner
that clearly shows the lack of data
dependencies to both programmer and
compiler. That is why loop 2 in the
above example would not be program-
mable as wavefront concurrency in any
applicative language. Gajski had
thought that some data-flow languages
did allow this possibility. Hence, de-
signers of applicative languages have
made the decision to forego concur-
rency that only a programmer can see
in favor of retaining determinate be-
havior of all programs, correct or erro-
neous.

Architectures and translation. The pro-
cess of translating an applicative-lan-
guage program for a particular archi-
tecture depends heavily on the nature
of that architecture. If the architec-
ture of the target machine is organized
around a central memory structure,
then translation of an applicative-lan-
guage program will be more difficult
because that is not the model of the
language. Translation to a data-flow
machine, on the other hand, is likely to
be much easier because the models
match very closely.

The first step in the translation,
regardless of target, is to transform the
program into a dependence graph.
Here, applicative languages have a
significant advantage because absolu-
tely no analysis is needed to produce a
dependence graph with complete and
precise information. The restricted
language definition has already re-
quired programmers to show all depen-
dencies clearly. A simple, inexpensive
algorithm then generates a graph with

just the dependencies imposed by the
program. Algorithms for analyzing
FORTRAN must spend significant time in
global flow analysis routines to produce
these same types of graphs, but even
then the resulting graphs may not
show all of the same concurrency.
Hence, applicative languages start
translation from a better vantage
point.

From here, one can apply standard8

machine-independent optimizations.
These optimizations are more likely to
produce significant improvements be-
cause they are working with complete
information. Further optimizations
will be needed to reduce the extreme
demands that applicative languages
currently make on memory space. We
expect that analysis similar to that of
Kuck's work will allow us to reduce
these demands considerably.

For translation to a data-flow ma-
chine, it is interesting to note that some
problems that normally require com-
piler analysis do not arise. In the ID
language2 there is no distinction
between parallel loops and sequential
ones. The model of execution simply
states that loops will proceed as fast as
possible, limited only by the data de-
pendencies. When translating to a
data-flow machine, the compiler never
needs to determine which loops are
parallel and which are not. Because
the machine does its execution using
the same data-dependency model as the
language, it will handle all loops cor-
rectly. Furthermore, if the machine
supports nonstrict data structures,
then one can similarly exploit wave-
front parallelism with no compiler
analysis at all. For any multiprocessor
target other than a data-flow machine,
a compiler would still need to perform
the analysis, probably using Kuck's
techniques. However, starting from an
applicative language will give the sys-
tem better information with which to
work.
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Response to Kuck and Wolfe
I see two major differences in approach
reflected in our articles. First, we look for
concurrency in different places within
programs. Second, we make different de-
mands on programmers. Applicative lan-
guages stress concurrency at all granulari-
ties—primitive operations, loops and
function calls. FORTRAN analysis focuses
on loops. Applicative languages require
programmers to rethink and rewrite their
programs in terms of pure mathematical
functions. FORTRAN analysis allows pro-
grammers to continue to use their old dusty
decks and make the best of a difficult
situation. In the short-term, FORTRAN
analysis can significantly improve perfor-
mance, especially on vector machines. In
the long-term, applicative languages will
allow users to exploit far more varied forms
of concurrency. However, if you insist on
staying with FORTRAN through its slow
evolution, I have suggestions for FORTRAN
9x—and they are all along the lines of
applicative languages. —JRMCG
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