Algorithms for
concurrent processors

A few general techniques allow many small computers

to work together efficiently and attack computationally demanding problems

in fields ranging from aerodynamics to astrophysics.
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Decomposition scheme in algorithm that
calculates the evolution of a system
governed by long-range forces. On the left
in a is the physical space containing the
interacting masses. On the right is the

concurrent processor, in a ring topology,
with each circle representing a small
computer, or “node." Note that masses

stored in the same node do not necessarily
lie close to one another in the physical
space. In b we see a "snapshot” of a
typical step in the long-range-force
algorithm. One particle from each node is
shown traveling between each pair of
nodes. Once this "traveler” arrives in a
é/ e node, the forces between it and all the
particles residing in that node are
computed. This is represented by the sets
of lines drawn within the nodes.  Figure 1

We are on the verge of a revolution in
computing, spawned by advances in
computer technology. Progress in
very-large-scale integration is leading
not so much to faster computers, but to
much less expensive and much smaller
computers—computers contained on a
few chips.! These machines, whose
cost-effectiveness is expected® to be
staggering, will make it practical to
build very-high-performance comput-
ers, or “supercomputers,” consisting of
very many small computers combined
to form a single concurrent processor.

Concurrent processing seems a more
practical route to high performance
than very fast sequential processing.
In fact, we anticipate machines consist-
ing of from 10 000 to 100 000 “nodes,”
with each node being a small but
complete individual computer of mod-
est power capable of some ten million
floating-point operations per second, or
“megaflops.” Such a design, which
should be practical within five to ten
years, offers the promise of machines
that are from one thousand to ten
thousand times as powerful as current
supercomputers. As such “top-of-the-
line” million-megaflop machines be-
come available, so will smaller parallel
processors, consisting of, say, 100 indi-
vidual nodes and having a total power
of some thousand megaflops and a cost
of perhaps twenty thousand dollars for
the basic CPU and memory (we are
ignoring such essential peripherals as
disks).
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“Cosmic cube." This concurrent processor consists of 64 identical small computers connected so that each can send

messages to 6 others. The 64 corners of a 6-dimensional cube, or hypercube, have this connection topology. Each
small computer contains 16-bit Intel B086 and BOB7 processors with 136 kilobytes of memory—roughly the power of an
IBM personal computer. The $80 000 cube has up to one-tenth the power of a Cray-1 computer, but one-hundredth the

cost. Shown here with the experimental machine at Callech are Geoffrey Fox (left) and Charles Seitz.

This increased power will revolution-
ize the approach to computation in all
fields of science and engineering. For
instance, one will be able to solve such
difficult problems as weather predic-
tion and the dynamics of quantum field
theories. It is worth noting that these
and other computationally intense
problems do need the huge increase of
power we expect from the largest con-
current processors. Other important
problems, such as those based on the
thre@dimensiona] differential equa-
tions that arise in aerodynamics and
other fields, may need computers
“only” in the thousand-megaflop range.

The main stumbling block to the use
of concurrent processors is the diffi-
culty of formulating algorithms and
programs for them.” Indeed, this leads
some to doubt the utility of these
machines, It is our belief that concur-
rent processors are quite easy to use and
are not specialized devices, but rather
can address the vast majority of compu-
tationally intensive problems. (See the
example in figure 1.) Thus, our goal in
this article is to present the general
techniques for using concurrent proces-
sors and to illustrate them with simple
examples, some of which we have run
on the machine shown in figure 2. We

will confine ourselves mainly to fields of
science and engineering, as opposed to,
say, artificial intelligence, because
these fields offer well-understood algor-
ithms that make it possible to quantify
the effectiveness of concurrent proces-
sors. However, we believe that our
considerations are general and have
applications in other fields.

General features of problems. Before
moving on to specific examples, it is
worth noting some general properties
of computationally demanding prob-
lems. Table 1 lists several examples of
problems and some of their features
that we have found important to their
solution on a concurrent processor. In
each case, one must decompose the
problem into many parts—one for each
node. Typically, a problem is not de-
manding because its algorithm is com-
plex in a conceptual sense. Rather,
there is a relatively simple procedure
(for example, partial derivatives in
computing V*) that one must apply to a
basic “unit” (a field, for example) in a
“world" that consists of a huge number
of such units. In finite-difference prob-
lems, the unit is a grid point in a three-
dimensional world. In a study of the
evolution of the universe, the unit 1s a
galaxy and the world is the universe

Figure 2

itself.

The first step in decomposing such a
problem for a concurrent processor is to
divide the world into subdomains in
such a way that each node of the
processor is responsible for a single
region. The box on page 59 illustrates
this for a simple two-dimensional prob-
lem requiring the solution of the La-
place equation V*¢ = 0. If we have N,
nodes and a total of D units—the grid
points in the figure—we find that the
number n of contiguous units in each
node is [/ N, . This type of decomposi-
tion i possible only if the number of
units is at least as large as the number
of nodes; we will see later that in fact it
is desirable for the number of units to
greatly exceed the number of nodes.
This constraint is easy to satisfy, To-
day, calculations with over a million
units are commonplace, and in all
fields the number of degrees of freedom
in state-of-the-art calculations is stead-
ily increasing

There are exceptions, of course,
where computationally intensive prob-
lems cannot be so decomposed. The
solar system is an example. In this N-
body gravitational problem with
N =10, we wish to integrate the 10
equations of motion over a very long
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flhle 1. Problems and concurrent processing

Class of problems

Finite difference equations; finite element
equations; partial differential equations

Statistical

Time evolution of 1/r potential

Time evolution of general dynamics

Fast Fourier transform

Network simulation

Examples

Geophysics, aerodynamics

Lattice gauge
Meiting
Coulomb gas

N-body gravity

Particulate mation
(sand avalanches)

Evolution of universe,
fiuid dynamics

Circuit simulation

Neural network

Unit and world

Grid point, space (xy.z)

Spacetime (xy.z.t)
Configuration space (xy.z )
Particle number

Particle number

Space (xy.z)
"Bit space," space (xy.2)

Companent circuit

Neuron, brain

Isplated Ray tracing (graphics), Event space
data analysis,
initial condition study

Image processing Analysis of satellite data Pixel space

Artificial intelligence Chess

Event-driven simulation

Industrial, economic, military
("'war games")

Inference, decision tree

Cars on a freeway, tanks
on a battlefield

as the log of the number of nodes

1 ime
“A mixture af long- and shnr‘l -range connections or interactions

Natural Load Cc tion C

Balance? range topology

Yes Short 30 mesh

Yes Short 4D mesh

No Short 30 mesh

Yes Long Ring

Yes Long Ring

No Short 30 mesh

Yes Long Hypercube

No Mixed™* Logarithmic
graph® such as
hypercube

No Mixed*"*

Yes Nane needed

Yes Long Hypercube

Yes Short Tree

No Mixed** Logarithmic
graph* such as
hypercube

time {. This large parameter { cannot
be easily decomposed, so we can use, at
most, 10 nodes for the problem. On the
other hand, one usually wants to exa-
mine the results of the integration for a
variety of initial conditions. One can
then decompose the problems on the
product space—particles and initial
conditions—and so make effective use
of a large concurrent processor.

Approach to problems

Concurrent processors have many
possible designs, which differ primarily
in the number and nature of the nodes
and their interconnection topology.
The hardware that we consider for this
discussion is what our Caltech col-
league Charles Seitz terms* the ensem-
ble or homogeneous machine. Such a
machine is a collection of identical
nodes, each a complete computer with
its own arithmetic unit and memory.
We will assume that each node can
execute its own instruction stream,
although this is not necessary for every
application. The resulting parallel pro-
cessor will then have an architecture
known as “MIMD"—multiple instruc-
tion, multiple data. The nodes may
even have another level of concurrency
within them, such as “pipelining.”
Rather than assuming that the nodes
are connected in any particular ar-
rangement, we will allow the connec-
tion topology to be general and exa-
mine each problem to find the
“natural” connectivity., Of particular

importance is the so-called hypercube,
or more precisely, Boolean hypercube
topology, in which one uses 2" comput-
ers with the connectivity of a cube in
dimensions. With the number of nodes
N, equal to 2, for example, the 8 small
computers will be connected like the
corners of an ordinary 3-dimensional
cube—each to three others. We will
not assume that there is any shared
memory accessible by all nodes; the
simpler distributed-memory architec-
ture seems sufficient for our applica-
tions. (See the article by James C.
Browne, page 28).

It is convenient to characterize the
effectiveness of a concurrent processor
by the speed-up, S, defined so that the
collection of N, nodes runs the same
problem S times faster than a single
node. Furthermore, we define the effi-
ciency € as the speed-up per node:

S=¢eN,. We wish to examine the
effects that reduce the performance of
a concurrent processor and lower the
efficiency from the nominally perfect
value of unity. One is usually quite
satisfied to find algorithms with linear
speed-up, that is, with an efliciency
that is independent of the number of
nodes, and of reasonable size, say at
least about 0.5,

Two considerations are particularly
important in discussing efficiency.
First, the nodes must spend some time
communicating with their neighbors.
This time is minimized if the internode
communication demanded by the algo-

rithm always proceeds by a “hard-
wired” path. We can view communica-
tion in ensemble machines as a mail
system where messages are sent
between arbitrary nodes through inter-
mediate nodes. Obviously, the “wast-
ed” communication time is minimized
if the amount of such message forward-
ing is small. In general, the “world”
that is decomposed in a particular
problem has a certain topology that
dictates the appropriate hardware con-
nectivity. The hypercube node connec-
tion scheme is attractive because it
includes the ring (figure la) and many
mesh topologies as subsets, as well as
being the topology needed for the fast
Fourier transform. Furthermore, the
distance between arbitrary nodes
grows only logarithmically with the
total number of nodes. This means
that the time spent forwarding is mod-
est for problems that have an irregular
structure—circuit simulations and
“war games,” for example. Table 2
summarizes the reduction in efficiency
due to communication for the problems
discussed in this article.

“Load balancing” is the second factor
affecting efficiency. One needs to en-
sure that all the nodes have essentially
identical computational loads. The ef-
ficiency is typically reduced by a factor
that is approximately the ratio of the
mean computing load per node to the
maximum load on a node. In the
example discussed in the box on page
59, we see that identical loads are
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Potential energy between two static (heavy) quarks, as a function of
their separation. The 64-node concurrent processor shown in figure 2

did this lattice gauge theory calculation in 2500 hours. No units for
distance and energy are given because the setting of an absolute

scale is nontrivial and requires further calculation. Figure 3
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Table 2. Algorithm efficiency and communication overhead

Algorithm

One-dimensional grd pont problems.
Long range forces.

Full matrix inversion.
Full matrix eigenvalues/function

Sparse matrices from two-dimensional grid-point or finite-element problems
Two-dimensional statistical mechanics.

Sparse matrices from three-dimensional grid-point or finite-element problems
Three dimensional statistical mechanics.

Fast Fourier transforrm.

The communication overhead, which is the amount by which the efficiency
differs from unity, is directly proportional to the ratio of f_,,, 10 f .., and
inversely proportional to f{n), where n is the number of "units,” of "“world"
stored in each node, ..., 1s the typical time to transmit a word along a
hard-wired link between nodes and (.. is the typical time for a floating point
calculation within a node. Mote that in all cases the communication
overhead tends to zero as the number 7 of units per node tends to infinity.

Proportionality function
fn)

e

n'ia

log
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achieved by assigning equal numbers of
grid points to each node. For such a
regular problem, this means simply
giving the nodes equal areas of the
“world.” There is, in fact, a small
deviation from perfect balancing in this
example, as the number of points
where the potential is fixed (and so
have no work associated with them)
does vary from node to node.

For homogeneous problems, it is
generally easy to achieve balanced
loads, but in some inhomogeneous
cases, care is necessary. Consider a
gravitational evolution, where we as-
sign an equal number of stars or other
celestial bodies to each node. In a
region where, say, binary stars form,
we may need to use a reduced time step.
Then, nodes containing binary stars
will have a larger load than those
without. There are two strategies for
combating this. If the nodes were
“large” enough, each would hold rough-
ly the same number of binaries and the
load would balance—we can term this
the “central limit theorem of decompo-
sition.” This example argues against
decompositions that are too “fine-
grained.” We also see in table 2 that
one needs to store a reasonable number
of *units” in each node to minimize the
communication overhead. A more
complex solution is to rearrange the
allocation of stars to processors dyna-
mically, so that those with binaries
have fewer other computational tasks,
Load balancing is an important practi-
cal consideration but does not seem to
be an insurmountable difficulty.

A column in table 1 shows whether or
not certain algorithms achieve load
balance naturally. Other columns
show the communication range and the
topology demanded by the algorithms.

Short- and long-range force

It is, perhaps, most clear how to use
concurrent processors for solving prob-
lems of a local nature. The canonical
example is the finite-difference solu-
tion of partial differential equations,
such as the one in the box on page 59.
The funadmental locality of the equa-
tions implies that field variables evolve
as a function of only the nearby (in
physical space) variables. Therefore,
the algorithm decouples in a simple
way: Assign each node to a subvolume
of the physical space and have it
develop the variables in this subvolume
alone. The algorithm for each node
proceeds almost as it would on &



sequential computer. The only differ-
ence is that variables in the subvolume
develop under slightly more complex
“boundary conditions”"—when the al-
gorithm encounters boundaries of the
subvolume, there must be communica-
tion with other nodes. In this type of
problem, we clearly want the intercon-
nection topology of the nodes to match
the physical space. We mean by this
simply that points that are nearby in
the physical space of the problem
should be “nearby"—separated by few
communication steps—in the concur-
rent processor. Two-dimensional and
three-dimensional meshes and hyper-
cubes are examples of these topologies.

Problems of a local nature are not
the only ones with algorithms that
make for efficient concurrent process-
ing, To illustrate this point, we will
discuss the extreme case of a complete-
ly non-local interaction: the N-body
Newtonian gravity problem. In the
direct method for calculating the evolu-
tion of this system, one simply com-
putes for all possible pairs of particles
the two-body force

4

F.,=62"

T

After computing these forces, one can
use the usual time-stepping procedures
to calculate how the particles move.
The force part of the computation will
dominate the calculation because it
grows as the square of the number of
masses, while the time stepping grows
only linearly. Though this is a slow
algorithm for the N-body problem, it is
often used because it is the most
accurate,

To perform this calculation on an
N, -node machine, we must first decom-
pose the problem. The relevant
“space” is not the space of particle
coordinates—the long-range interac-
tion tells us that it does not help to
associate particular regions of coordi-
nate space with the processing nodes.
Instead, we decompose in particle num-
ber by making each node responsible
for calculating the evolution of an
equal number n of the masses. Here n
is simply N/N,, the ratio of the num-
ber of bodies to the number of nodes.
We can assign particles to nodes ran-
domly, because each node will track a
particular group of particles through-
out the entire evolution. At any given
fime step, a node's particles will be at
widely scattered positions in coordinate

space, as figure la illustrates.

Suppose now that the interconnec-
tion topology of the nodes contains a
ring. Examples of such topologies are
rings themselves, hypercubes and peri-
odic meshes, In the first step of the
algorithm, each node notes the mass
and coordinates of one of its particles
and passes the information forward in
the ring by one node. Each node then
computes the forces between the in-
coming particle and all the other parti-
cles in the node. Once this is complet-
ed, the *“traveling” particles move
along the ring by another node and the
process repeats until the entire ring of
nodes has been traversed. The entire
traversal cycle is then repeated for
another particle, and so on, until all
particles have visited all nodes. The
snapshot in figure 1b shows a typical
step in the algorithm.

This algorithm for handling long-
range forces is efficient as long as the
time to communicate a particle
between nodes is small in comparison
to the time needed to compute the
forces between the particle and all the
particles in the node. This condition is
easy to satisfy in practical examples—
even with just a few particles per node,
and hence a high degree of parallelism,
the method is very efficient. In fact,
the long-range-force algorithm is one of
the most efficient algorithms we have
found. This is illustrated in table 2,
which shows that the communication
overhead is proportional to 1/n,
whereas for other algorithms the
overhead decreases more slowly as a
function of n. The general point is that
it is not the amount of communication
that matters; rather, what matters is
the amount of computation done per
communication.

Lattice gauge theory

Numerical simulations of statistical
mechanical systems in thermal equilib-
rium and the similar methods used in
lattice gauge theory are becoming in-
creasingly important in physics. These
simulations require computers with
extremely high computational capacity
because of the slow, statistical conver-
gence of observables and because of the
typically large number of degrees of
freedom.

The interaction in this class of appli-
cations can be taken to be local, that is
short ranged in the physical space of
the problem. Non-local interactions do
arise, for example, from a renormaliza-

tion group analysis or, in the case of
lattice gauge theory, from the presence
of dynamical quarks. In these situa-
tions, to make the calculation tracta-
ble—even on a sequential computer—
the interaction must be cut off (in the
renormalization group case) or calcu-
lated by a more complex method, but
one involving only local interactions (in
the dynamical quark case). Once the
interaction is local, the obvious decom-
position onto the concurrent processor
is the same as that for the finite-
difference algorithm, in which each
node is responsible for a subregion of
the physical space and for developing
the variables of that subregion only.
When calculating the evolution of sys-
tems with many degrees of freedom,
there is a slight complication in that
one must ensure that the procedure
used still satisfies the necessary con-
traint of detailed balance.

We have some direct experience with
the statistical-mechanics algorithm.
Currently, we are doing a Monte Carlo
lattice gauge theory computation on the
system of 64 microprocessors built at
Caltech® and shown in figure 2. The 2°
nodes of this MIMD machine are wired
as a 6-dimensional hypercube. An in-
terdisciplinary team of scientists and
engineers is doing forefront research
problems on this machine and is design-
ing and constructing more powerful
machines. Similar projects underway
at other universities include a success-
ful Ising model processor® at the Uni-
versity of California, Santa Barbara,
and a potentially high-performance ma-
chine being built by a group at Colum-
bia University.” On the Caltech system,
we have simulated SU(3) lattice gauge
theory for a 12x12x12x16 lattice,
measuring the potential energy be-
tween a pair of static (heavy) quarks,
This quantity is of fundamental inter-
est both because it can be compared
with experiment and because it clearly
demonstrates the nonlinear and quan-
tum mechanical nature of quantum
chromodynamics.” Due in part to the
significant power of the 64-node ma-
chine—up to one-tenth that of a CRAY-
1—we have achieved results® with sta-
tistics good enough to make detailed
checks of the efficacy of the lattice
gauge approach. (See figure 3.) As for
the efficiency of the machine, for this
problem it varies from 95% during
measurement of the potential to 97%
during calculation of the gauge field's
evolution. Equivalently, the speed-up
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for this 64-node machine varies from 61
to 62. We consider this realistic, state-
of-the-art algorithm to be an “‘existence
proof” that computations in statistical
mechanics run with very high effi-
ciency on a concurrent processor with
mesh or hypercube connectivity.

There is another class of problems in
statistical mechanics in which the de-
grees of freedom are not tied to an
underlying lattice. Examples of such
problems are the melting transition
and the thermodynamics of liquids and
gases. In these cases, one still decom-
poses in physical space, but the parti-
cles can travel from one processor to
another. This makes it somewhat
harder to maintain load balance and to
implement the constraint of detailed
balance. Members of our research
group are currently working on prob-
lems of this nature.

Matrix problems

Many scientific and engineering
problems boil down to the solution of
large matrix equations. These can be
classified according to the structure of
the matrix and the nature of the
operations to be performed. We will
consider here the inversion of both
sparse matrices, in which most ele-
ments are zero, and “full” matrices, in
which few elements are zero.

Sparse matrices arise in the solution
of boundary-value problems for partial
differential equations, which, of course,
are common to many disciplines, such
as geophysics and aerodynamics. In
such a problem, the rows and columns
of the matrix are labeled by the coordi-
nates of an associated grid point (or
node of a finite-element formulation).
For a three-dimensional grid with
100 100« 100 points, the matrix M is
very large, namely 10°x10° One
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usually wants to solve the boundary-
value problem for one or a few different
choices of the boundary conditions.
Each solution involves solving the fol-
lowing system for x

Mx=b

In this equation, M is the matrix
representing the differential operator,
x is the field and b represents the
particular boundary condition in ques-
tion. Popular methods for solving this
equation are pre-conditioned conjugate
gradient and Gauss-Seidel or Gauss—
Jacobi iteration techniques, and we
take the latter as the simplest example.
We write the matrix M in the form
M=D+ N, where D is a diagonal
matrix and N has the off-diagonal
elements of M. The equation is solved
iteratively by the recurrence relation

Dx,=b—Nx,_,

The nonzero elements of the matrix
M relate rows and columns correspond-
ing to nearby space points. It follows
that one can implement this recur-
rence relation efficiently on a concur-
rent processor as long as the machine
itself has a three-dimensional mesh
connection. One must assign nodes to
subregions in the fashion analogous to
the scheme shown in the box on page
59, so that the topology of the concur-
rent processor matches that of the
underlying physical space. In fact, the
algorithm given in the box for solving
the Laplace equation is just the Gauss
iteration technique.

There are important problems that
involve the manipulation of full matri-
ces, For instance, one approach to the
numerical calculation of chemical reac-
tion dynamics described by a multi-
channel Schradinger equation is domi-

I5(6) fo(7)
Iof4) fal5)
13)
fal2)
’t o )
:
0

nated by successive inversion of full
N, xN. matrices, where N. is the
number of channels. Variants of the
familiar Gaussian elimination tech-
niques are the preferred algorithms,
The best decomposition for such prob-
lems appears to correspond to viewing
the matrix as a two-dimensional
“world" whose “‘units” are the matrix
elements.'” One divides this world into
square subregions with, for example,
each of 64 nodes holding 1010 sub-
blocks of an 80 80 matrix. One can
show that as long as the concurrent
processor has at least a two-dimension-
al periodic mesh connection, the imple-
mentation has linear speed-up and
reasonable efficiency. The communica-
tion overhead is small and the lack of
exact load balancing degrades the effi-
ciency to about 50% with a simple
algorithm, while more complicated im-
plementations can improve even this
satisfactory result significantly. This
analysis holds for either inversion or
eigenvector problems.

In fact, full matrix problems are
another example where what counts
for the efficiency is not the amount of
communication but rather the ratio of
communication to calculation. Let us
give the basic idea. A typical subopera-
tion in a matrix algorithm is the
subtraction of one row (with a certain
multiplier) from all other rows. Sub-
stantial communication is involved in
sending the row to be subtracted to a
particular processor. However, each
transmitted matrix elementisusedina
calculation for every row stored in the
given processor. If we have n matrix
elements stored in each processor as a
Jn by n submatrix, then the ratio of
calculation to communication is pro-
portional to n/\n, or yn. Tt is interest-
ing to compare this with our example of
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Data flow in an B-point fast Founer transform. The original function is denoted f,(x) and appears at the left in a, stored in
natural order, x = 0,1,....,7. The algorithm proceeds to the right. The function , is the result of partially transforming the
original function £, in the highest, or 3rd bit of x. Similarly, £, and £, are the results of transforming in the 2nd and 1st bits,
respectively. The function f; is simply related (through bit reversal) to the Fourier transform of the oniginal function .
The three-dimensional cube in b shows the ariginal function £, stored consistent with the binary labeling scheme
explained in the text. The axes 0, 1 and 2 refer to incrementing the lowest bit of x, the second bit and the third. Part ¢
shows the flow of data for the B-point fast Fourier transform, after it is mapped onto the three-dimensional cube. The
three pictures f,, f; and f; correspond to the three iterations shown in a.

a two-dimensional Laplace equation,
where we get the same result even
though the underlying matrix is
sparse. Note that, as table 2 shows,
these problems have the same form for
the communication overhead, In the
case of the full matrix, we have to
transmit all n elements, but we do yn
calculations for each element transmit-
ted. For the sparse matrix, we only
communicate n of the elements, but
the number of calculations is also
reduced to the order of one per element.
We saw the same effect in the analysis
of long-range-force problems. It is
clearly a rather general result that
features of a problem that increase or
decrease the needed communication
also alter the calculational load in the
same direction. It is clear from our
examples that many problems with
substantial communication still have
low values for the crucial ratio of
communication to calculation.

Fast Fourier transform

The fast Fourier transform is one of
the single most important algorithms
for the sciences. Any concurrent pro-
cessor, to be at all considered “general
purpose,” must be able to perform this
algorithm with reasonable efficiency.
Beyond its obvious applications in sig-
nal processing and image processing,
the fast Fourier transform is useful for
solving linear partial differential equa-
tions with translational invariance.

As a concrete example, we turn once
again to the N-body gravity problem.
Instead of solving for the forces direct-
ly, we first find the gravitational poten-
tial @, which is related to the force F by

F=Vg

The potential satisfies the Poisson

equation
Vig = 4rGp

Here p is the mass density function.
We apply these results to the N-body
problem by first laying a finite grid
over the continuous, three-dimensional
space in which the particles move.
Next, we define a discrete mass-density
function on the grid sites by averaging
over particles near each site, giving, we
hope, a good approximation to the mass
density function p. Finally, we solve
the discrete version of the Poisson
equation, finding the potential ¢, which
we differentiate numerically to get the
force F.

The computationally intensive part
of the above procedure is solving the
Poisson equation. The speed of the fast
Fourier transform method makes it
most attractive to do this by transform-
ing to Fourier space. In the continuum,
the idea is as follows. Transform the
Poisson equation to Fourier space, ar-
riving at an equivalent equation for the
transformed functions:

— k*p(k) = 47 Gp(k)

As is the case for most linear partial
differential equations, the solution be-
comes trivial—simply divide by &*:

k) = — 47Gptk)/ k*

Finally, transform back to real space to
find the solution @(x). Because the fast
Fourier transforms take a time propor-
tional to N log,N, where N is the total
number of grid points (N=L" for a
L+ L xL grid), and the “divide by &*"
step goes as N, the equation is solved in
a time ¢, N log,N + ¢, N.

There are various fast Fourier frans-
form algorithms that are approll:;riate
depending upon whether the number N
of points of the transform is a prime

Figure 4

number, a composite or an integral
power of 2. The algorithm for 2" points
is the simplest and most commonly
used; here we will concentrate on it.

A diserete Fourier transform re-
quires the evaluation of an expression
such as

N-1
Ri)= % Axiw*
x=0
for £=0,1,...N-1
w = expl — 27i/N)

Instead of evaluating the above sum
directly, which would take N* steps,
the fast Fourier transform for 2" points
evaluates it in a series of y iterations,
each iterate consisting of a Fourier
transform in one of the binary digits or
“bits” of x. It turns out'' that the
transforms in each bit partially decou-
ple, allowing the algorithm to proceed
rapidly, in Ny, or Nlog,N steps.
Figure 4a illustrates the flow of data
for the fast Fourier transform for 2°
points. At each iteration, data that
differ in one and only one bit, calculat-
ed in the previous iteration, are com-
bined. So that our concurrent proces-
sor will perform efficiently, we want it
to have a connection topology that
allows these data to be “near” each
other. The hypercube is one possibil-
ity. A convenient scheme for labeling
the nodes at the 2" corners of a j~
dimensional hypercube is to label each
by a y-bit binary number. The ith bit of
the number represents the coordinate
of that node in the ith dimension. The
edges of the hypercube connect the
nodes. In terms of the binary labeling
scheme, we see that nodes whose labels
differ in one and only one bit are
connected. The applicability of this
topology to the fast Fourier transform
now becomes clear: If the data are
stored in the 2" hypercube consistent
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Potential around a capacitor in a grounded box

Here we show a decomposition appropriate
for a two-dimensional problem requiring the
solution of Laplace's equation V@ =0 with
particular boundary conditions: a parallel plate
capacitor in a grounded box. We have setup a
1616 grid with the field at a point (4 )
denoted ¢, ,. Dotsin colored regions denote
field points where the potential ¢ is fixed.
Other dots denote interior points at which ¢,
is to be determined. The finite-difference ap-
proximation to Laplace's equation V@ =0
|eads to a matrix inversion that one can solve
iteratively. To each internal point (i j, we
succesively apply the basic algorithm

Feantral = (@Iel’l + Prignt + Fup + Faawn )74
This is llustrated in the diagram on the right for
one point labeled “central."

The diagram shows a possible implemen-
tation on a 16-node processor. Grid points
marked 1 are updated simultaneously (one per
node), then those marked 2, and so on. Note
that the local nature of the differential equa-
tion means that application of the above
equation needs either points stored internally
to the node or points stored in processors that
are adjacent in the array. This implies that a
two-dimensional mesh connection for the
nodes, corresponding to the nature of the
domain and the local equation defined on it, is
appropriate,

with the binary labeling scheme of the
nodes, the topology is natural for the
algorithm. This is shown in figures 4b
and 4c, where we see that the seeming-
ly complex topology of the fast Fourier
transform maps naturally onto the
cube. At each iteration of the fast
Fourier transform, the data points
differing by one bit are one communica-
tion step apart and the algorithm
proceeds straightforwardly.

Because the Boolean hypercube is a
natural topology for the binary fast
Fourier transform, it is not surprising
that a detailed analysis shows'" that
the transform runs with high effi-
ciency. On our machines at Caltech,
we have implemented fast Fourier
transform codes for galactic dynamics
and simulations of the early universe.

The fact that the hypercube is well
suited for fast Fourier transforms does
not mean that simpler architectures,
such as meshes, cannot perform these
transforms. They can, although with
some complications in the structure of
the algorithm and some degradation in
efficiency. For more detailed consider-
ations concerning fast Fourier trans-
forms on meshes and hypercubes, see
reference 12 and references therein.

In the past, the subject of algorithms

Boundary ¢, =0
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No communication with
another processor needed

for parallel processing was a somewhat
esoteric pursuit, known to a few com-
puter scientists. [t was mainly a theo-
retical subject, for the simple reason
that few machines existed. The tech-
nology of very-large-scale integration is
rapidly changing the situation, and it
will soon be possible to build machines
of very high processing capability
cheaply. We believe that with this
motivation, scientists will learn to use
the parallel processing algorithms al-
ready known, and will no doubt invent
better ones. This will not only delin-
eate the basic principles of decomposi-
tion but help the development of tools,
such as languages and compilers, to
make concurrent processors as easy to
use as sequential machines.
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