Parallel architectures for

computer systems

Having several parts of a system simultaneously perform different parts of a task is an
old notion that is proving more and more useful in the design of powerful computers.

James C. Browne

Sequential

Inputs

*-0-0-0-0_-0

Caoncurrent

Inputs

—9 -0

Processor

P -0 -9 —

Sequential versus concurrent (or parallel) computing. A sequential
computer works on one operation at a time, converting input
information into output information; the processes it performs are
governed by a program, which forms part of the input. The output can,
of course, be used as input—data or even program information—at a
later stage, A concurrent processor consists of several sequential
processors working on separate streams of input; outputs from one
processor can serve as inputs for that processor or for another

processor in the system

28 PHYSICS TODAY / MAY 1984

Figure 1

Outputs

-0 -90-0-0-®—

Qutputs

People frequently do more than one
thing at a time: Driving a car while
listening to the radio, cooking a meal so
that several dishes are ready at once, or
playing two lines of melody on a piano
are all familiar examples. On a larger
scale, many human activities, such as
building a house or complicated experi-
mental apparatus, or putting out a
magazine, are separated into what
might be called *“units of activity"” that
are performed separately by people
working in parallel. On a smaller
scale, our brains control separately—
but in a coordinated fashion—breath-
ing, heartbeat and several different
kinds of motor activity. In each of
these cases, separate units of activity
are carried out by separate processors
(different people or different parts of
the brain, for example) that work
simultaneously (at the same time, but
not in lockstep) and interact to produce
the final effect or product.

The traditional view of computer
design, however—as promulgated by
such theorists as Charles Babbage,
Alan Turing and John von Neumann,
and as built into computers ranging
from Eniac and UNIVAC to today's
pocket calculators—is based on a single
central processor performing opera-
tions sequentially to produce the de-
sired result. In this scheme, computers
that appear to perform several tasks
simultaneously only do so by switching
between tasks so rapidly that the user
is not aware of the switches.

The distinction is, of course, not
absolute. At the most elementary lev-

James C. Browne is professor of computer
sciences and physics at the University of
Texas at Austin.

0031-9228 / B4 / 0599A8<0R.L201 00 F 1084 American [nstitute of Physics

el, even the most rigidly sequential of
computers performs some tasks in a
parallel: Only the purely abstract Tur-
ing machine performs its tasks one bit
at a time; most computers deal with at
least eight bits in parallel. And in
many cases, some units of activity of a
task must be performed in a specified
order; You can’t make the omelette
until all the eggs are open. The differ-
ence is in what is called the architec-
ture of the computer, the way it is
designed to perform tasks: Does it
perform several “units” of activity at
once, using interacting processors, or
does it use a single processor to perform
one unit of activity at a time? (See
figure 1.)

Parallel architectures are not a new
idea.' The British cryptanalysis ma-
chine Colossus is reported to have used
some parallel computations, and Van-
nevar Bush described some proposals
along these lines in his 1945 report
Science, The Endless Frontier. In the
1950s, groups at IBM, the University of
Illinois and elsewhere were working on
designs for parallel structures for nu-
merical computations® and for pattern
recognition.® Daniel Slotnick and his
collaborators at IBM, at Westinghouse,
and (since 1964) at Illinois produced
proposals for several general-purpose
computers based on parallel architec-
tures’—Solomon in 1962 and Illiac-IV
in 1968. Illiac-IV was designed to
consist of four sets of 64-processor
arrays, each array carrying out a sepa-
rate stream of instructions. Because of
engineering problems (its design was
too advanced for the available technol-
ogy), only one array was built; it was
dismantled a few years after being
commissioned in 1973. The simple,
regular structure of signal-processing

applications motivated the develop-
ment of several early parallel comput-
ers, such as the Burroughs Corpora-
tion's Parallel Element Processing
Ensemble (for radar tracking; built in
1972), and the Goodyear Aerospace
Corporation’s Staran (for image pro-
cessing; several were built, starting in
1972). In England, International Com-
puters Ltd. built the Distributed Array
Processor (first operational in 1977); it
contains an array of 64 < 64 processors,
each of which operates on single-bit
operands, but which operate together
on multiple-bit operands. In the last
few years machines have become avail-
able that perform several different
operations in parallel—rather than the
same operation on several sets of data.
The Heterogeneous Element Processor
built by Denelcor is probably the first
commercially available general-pur-
pose computer that can perform sever-
al operations concurrently.

The operating systems of today's
multiprogrammed computer systems
are parallel programs—often of im-
mense complexity, The high-perfor-
mance mainframes of today have much
internal parallelism that is rarely visi-
ble from the user's level. In these
CPUs the internal parallelism includes
overlapping the execution of individual
instructions and parts of instructions.
For example, the vector architectures
that dominate today’s very-high-perfor-
mance computers incorporate proces-
sors that operate on vectors by per-
forming simultaneously the required
operation on several elements, or com-
ponents, of the vector. Furthermore,
because one knows in advance the
sequence in which operands are re-
quired by the program, one can arrange
to fetch them in advance and present

them to the CPU in order. Such
operations can be performed while the
CPU is working on other data—a spe-
cial kind of parallelism called pipelin-

Ing.
Potential power

Not only will parallel computation
have a direct impact on science by
increasing the computer power avail-
able for focusing on a given problem, it
will also, by reducing the cost of large-
scale computations, broaden the scope
of problems to which computer-based
techniques can be applied. Further-
more, | believe that the concepts of
parallel structures and the ways in
which algorithms and programs exploit
those structures will have an effect on
the way in which problems are formu-
lated in the first place. The computer
may, in fact, become as deeply involved
in the formulation of problems as in
their solution.

At present, one of the chief functions
of high-performance computers in
science is to implement—through eva-
luation of mathematical models—ex-
periments on physical systems; in
many cases such computer simulations
are required because the real experi-
ment would be too slow, too costly, too
idealized, or impossible to realize,
Thus, for example, one can model plate
tectonics to obtain insights that might
have taken millions of years of experi-
mental observations; one can model the
behavior of plasmas in a fusion reactor,
under varieties of conditions that
would require enormous resources to
produce experimentally; one can model
the behavior of spins in an [sing model,
avoiding interactions and other compli-
cations that would obscure the relevant
effects in a real system; and one can

PHYSICS TODAY / MAY 1984 29

<

Algorithms Mapping

e

Applications

Architecture

Programming

High-level language

Compile, load

model the behavior of objects near a
black hole.

The more powerful the computer
system, the more effective it is as an
“experimental” apparatus, and the
more complex are the models that it
can investigate. In today's world, the
degree of resolution or the complexity
of the model is often severly limited by
the capabilities of the available com-
puter systems. There is currently no
visible limit to the computer power
that could be utilized for these prob-
lems. Clearly, while we may have
reached in some cases a diminishing
ratio of knowledge returned per cost of
computation on today's computers, we
have not yet reached a diminishing
rate of return for knowledge gained
from increased resolution and complex-
ity of the models investigated.

There has historically been a sub-
stantial rate of increase in computer
power, of the order of a factor of 4 or so
with every new generation of high-
performance computers. Each genera-
tion of these computers has also had a
more or less constant cost (in real—
uninflated—terms) for a typical sys-
tem. This enhancement in power at
more or less constant cost has come by
increasing the speed of the components
and by increasing the internal parallel-
ism of computer architectures. (One
should not forget the role of better
algorithms as well: Frequently the
improvement in the algorithms for
sequential computations have created
improvements in effective computer
power greater than that supplied by

30 PHYSICS TODAY / MAY 1984

improvements in components and ar-
chitectures.) The article by Charles
Seitz and Juri Matisoo in this issue
(page 38) analyzes the state of compo-
nent technology and explores the fac-
tors that limit development of high-
performance components.
Components at the top end of the
performance spectrum have not in-
creased their speed dramatically in
recent times, and while new technolo-
gies such as gallium arsenide promise
to give higher speeds, revolutionary
increases are not to be expected. The
increase in speed one can gain by
internal parallelism in the computer
also appears to be slowing now, largely
because of the limited span of oppor-
tunities for parallelism in the hard-
ware, because of limits in software that
make use of the internal parallelism,
and because users are limited in the
ability to formulate algorithms using
the internal—and generally invisible—
parallelism. We must now turn to
architectures with explicit, problem-
visible parallelism to bring about an-
other sharp increase in absolute speed
and in the ratio of power to cost.
The potential for improvement in the
ratio of cost to performance, while not
as obvious as the potential for improve-
ment in raw computer power, is also
considerable. Current high-perfor-
mance computers are specially de-
signed and custom-built using special
high-speed components. These compo-
nents are seldom used in volume, and
their unit cost is very high. The
potential increase in the ratio of perfor-

Models of computation are structures
inherent in any description of a
computation. An algorithm provides a
description of steps to be taken in the
computation; it can be mapped onto a
computer architecture whose processors
and structures perform the calculation. In
practice, the calculations are described in
higher-level languages, in which the
algorithm is represented by a program; a
compiler binds the program to the
architecture of the machine by expressing
the program in machine language. Figure 2

mance to cost for parallel architectures
arises from the fact that the computa-
tional elements of parallel architec-
tures can be built from standard com-
ponents. Because they are used in
large numbers, these components may
turn out to be very inexpensive. High-
performance parallel computers may
eventually be built by connecting to-
gether a large number of identical
simple cells into a regular network.
Such a manufacturing process is poten-
tially subject to automation. The kind
of leverage available through replica-
tion can be seen by considering that a
single computing element capable of
perhaps one million instructions per
second, complete with adequate mem-
ory, can be built for perhaps $500 to
$1000; it should thus be possible to
build a computer than can perform
100 000 000 instructions per second for
only hundreds of thousands of dollars.
Of course, many very real practical
factors still stand in the way of realiz-
ing this computational nirvana.

Models of computation

To understand parallel computer ar-
chitecture, we need to discuss in very
general terms what computers do:

» What are the primitive units of
computation that are directly execut-
ed?

» How are these primitive units com-
bined into larger tasks?

» Where do the inputs and outputs of
the primitive units come from and go
to?

» How are the operations of the com-
puter organized in time?

» How do the processors that execute
the computation communicate with
each other and what is the topology of
their connections?

Any model of computation must pro-
vide answers to these questions. Inthe
case of the familiar sequential comput-

er, the primitive units are arithmetical
operations, such as + or —; they are
combined by performing them sequen-
tially; the data on which operations are
performed come from, and go to, mem-
ory registers; the operations are per-
formed sequentially, with all opera-
tions timed by a master clock; and the
interconnections are trivial, as there is
only one processor. Today’s high-per-
formance computers, of course, embody
much more complex models of compu-
tation.

Every algorithm defines an intrinsic
model of computation, in that there is a
computer architecture to which it can
be directly mapped. Conversely, the
class of algorithms a computer can
execute effectively is determined by the
model of computation implemented in
its architecture.

Among computer architectures one
can distinguish several basic varieties:

SISD: The computer applies a single
stream of instructions to a single
stream of data (as in a typical sequen-
tial computer).

SIMD: The computer applies a single
stream of instructions to multiple
streams of data.

MIMD: The computer applies multiple

streams of instructions to multiple
streams of data.
The processors that carry out primitive
units of computation are SISD systems;
these can then be connected together,
with appropriate sequencing and syn-
chronization mechanisms, to form the
more complex systems.

There are several ways to ensure
that computations are performed in the
proper order and at the proper time.
With explicit synchronization, the in-
struction streams are regulated either
by an external agent or by a mutual
protocol. With implicit synchroniza-
tion, instruction streams are regulated
by the flow of data; a processor either
waits to perform its computation until
all the necessary inputs are ready, or it
waits to call for inputs until the results
of its computation are called for else-
where. Processors can communicate
either via switched circuits or via
permanent circuits.

Today’s high-performance comput-
ers generally include some parallel
structures because their multipro-
gramming operating systems are high-
ly parallel programs, whose unit tasks
for parallel execution are the activities

Parallel architectures can be classified
according to connections between
processors and memory: (@) single bus
connecting processors to a common
memaory; (b) multiple buses connecting
processors to a common memory, (€)
multiple processors connected by a
switched network to multiple memories; (d)
processors with internal memories
connected into a network. Figure 3

-—— Processors

Bus

————————— Memory

-f— Processors

Buses

~———— Memory

-—— Processors

~———— Processors

Interconnection
netwark

PHYSICS TODAY / MAY 1984 31

of separate user programs. To allow
these prarallel programs to execute
effectively, the architecture must pro-
vide capabilities for synchronization.

An example of the sort of problem
faced by parallel processors is raised by
the use of shared memory. It is vital
that two different programs—or parts
of a program—not simultaneously al-
ter the value of a specific set of data,
otherwise the symbols on which the
computer operates would lose their
consistency or meaning. A single ad-
dress, in other words, must always
refer to a single item, although its
value may change in time. Mast oper-
ating systems now avoid the problems
using a TEST AND SET or TEST AND
AUN operation. To use such an oper-
ation, each unit of memory carries a
coordination element that can be set to
either “busy” or “free.” A process that
requires shared data first executes a
TEST AND SET operation, If the value
of the coordination element is “free,” it
simultaneously returns that value and
sets it to “busy."” The process can then
use the shared data; when it is done it
resets the coordination element to
“free”so other processes cn use the
data. If the value is “busy,” the
process executes another TEST AND
SET operation later. (The operation is,
in fact, much like the operation of
“busy" signals for telephones.)

Computer scientists have developed
a large number of such mechanisms for
coordinating processes through the use
of shared data® Operating systems
and data-base systems make use of
these mechanisms. However, the
mechanisms will probably not be effec-
tive for the management of large-scale,
user-level parallelism because they do
not scale up to the management of a
large number of processes, nor do they
take account of the topology of com-
munication. In fact, many of the prob-
lems faced by programmers for parallel
architectures will be different in kind
from those solved by the currently used
mechanisms, such as the TEST AND SET
operation. The several processors may,
for example, each have an independent
memory; the coupling between proces-
sors would thus not be via a shared
memory but via explicit communica-
tions channels between processors.
The synchronization and sequencing
methods for such architectures must be
developed specially for each type of
system.

Typical of the sort of problem that
can be efficiently solved by parallel
structures is the solution of partial
differential equations. In general, the
equations are discretized into linear
equations, and the solutions are found
by iterating these step-by-step from the
initial or boundary conditions. One
possible way to proceed is to perform
each ol the operations on a given row of

{AY 1884

A mesh of processors. A fixed network can connect processors, or
processors and memories, with each other in a multidimensional
array. Usually only nearest neighbors are connected, as in this two-

dimensional array.

the set of linear equations using a
separate computer. One architecture
that can effectively execute such a
parallel algorithm is one with nearest-
neighbor connections between the com-
puters and enough memory on each
computer to store a full row of the
array. The synchronization mecha-
nism can be the notification of readi-
ness to exchange data.

Languages and architectures

As [have mentioned, each computer
architecture implements efficiently
some class of algorithms—those algor-
ithms that map onto the model of
computation embodied in the architec-
ture, However, the programmer rarely
deals with the machine-language de-
tails of the execution of a program.
Nearly all programming today is in
some higher-level language, which, in
turn, is compiled into machine instruc-
tions for executing the program.

Each higher-level language also em-
bodies a model of computation. For
example, FORTRAN specifically imple-
ments in its model of computation the
execution of logical and arithmetic
operations on scalars, Operations on
larger arrays, such as vectors, must be
explicitly assembled by the program-
mer from elementary operations; FOR-
TRAN procedures, such as DO loops, are
operations for composing larger opera-
tions from smaller operations.

Figure 4

Figure 2 illustrates the relationship
between algorithms, architecture and
languages. A given problem is formu-
lated as a sequence of algorithms.
Each algorithm defines some model of
computation. The algorithms are ex-
pressed in a programming language,
which itself embodies some spectrum of
models of computation. The programs
are then compiled or translated into a
program for an architecture, which
also implements some model of compu-
tation. This series of mappings intro-
duces additional complexity into the
process of solving computational prob-
lems. The more disparate are the
models of computation of the algor-
ithms, the languages and the architec-
tures, the more complex are the map-
pings and the more difficult their
expression becomes. James McGraw
debates with David Kuck and Michael
Wolfe on the best way to design higher-
level languages to respond to these
problems in their articles on pages 66
and 67.

The current programming languages
available for common use in science
offer very little in support of parallel
structuring. New versions of FORTRAN
are being proposed that include vector
and parallel constructs. Manufac-
turers who have built computers con-
taining parallel architectures have ex-
plicitly included parallel structuring
capabilities in the compilers for some of

Switching network. An external program can set the switches so that
any processor can be connected to any memory, Alternatively, by
carrying an appropriate address, a packet of information traveling

through the network can go between any processor and any memory.
In the network shown here a single binary bit can switch each node to

_

AN

the appropriate state, so that the address and switching instructions

can be one and the same.

their machines. The vector extensions
in the FORTRAN languages for the Con-
trol Data Corporation Cyber 205 and
the Cray Research Cray-1 systems are
examples. Another example is the
parallel FortraN for HEP, which has a
MIMD architecture. There are modern
programming languages, such as apa,
that do include explicit parallel struc-
turing. These languages, however,
tend not to be a part of the professional
background of the working computa-
tional physicists. Nor are these lan-
guages particularly well suited to the
expression of parallel mathematical
models of physical systems.

Connecting the elements

Both the primitive operations per-
formed by the individual processors in
a parallel architecture, as well as their
organization into a network, determine
the properties of the resulting comput-
er system. In fact, the dominant ele-
ment in determining the properties of a
parallel computer can be the way in
which the processors communicate and
synchronize their operations. The indi-
vidual processors in a brain (the neur-
ons), for example, compute fairly primi-
tive functions; the computations
performed by the entire network are
quite sophisticated, as anyone who has
used one can affirm.

Figure 3 shows the kinds of struc-
tures that have been proposed for

Figure 5

Processors
/ 7
ol

Switches\

Memories

parallel architectures: Individual
processors can be connected to a com-
mon memory by a single or multiple
data bus; processors can be connected
to multiple memories by a network of
connections; or the individual proces-
sors can each carry their own memo-
ries, with interconnections directly
among processors. Each of these
schemes has advantages and disadvan-
tages. The single common bus is simple
and straightforward, but for large sys-
tems it is easily overloaded. The multi-
ple bus is less subject to overload, but
each processor’s access to memory may
still be degraded by conflicts with other
processors. The switched network re-
duces the conflicting-access problem,
but at the cost of a large switching
network and the programs to control it.

The next obvious step is to construct
individual computer systems, each
complete with its own memory, and
connect each processor to some of the
others in the system. The common
choice is to connect the processors to
their nearest neighbors in a multidi-
mensional array. The individual
processors of [lliac-IV, for example,
were each connected to their four
nearest neighbors in a planar array,
like that shown in figure 4. Arrays in
three or more dimensions are, of
course, also possible. Geoffrey Fox and
Steve Otto discuss such interconnec-
tions in their article on page 50. A

problem can arise with such systems
when one assigns computations to
processors, because the communication
between computations required by the
algorithms may not map straightfor-
wardly upon the nearest-neighbor
connections implemented by the archi-
tecture. The time taken by the com-
munication among processors can then
become a major factor, dominating the
total execution time. The mapping of
common algorithms of linear algebra
onto simple interconnection structures
is an active topic of research.”

To avoid both the material cost of
establishing permanent connections
between all processors in a system of
the kind shown in figure 3d and the cost
in execution time arising from mis-
matches in connectivity between the
algorithms and the hardware, some
designers have proposed replacing
fixed interconnections with a switcha-
ble network. These networks may be
based on multilevel structures, such as
the one shown in figure 5, or on the
creation of circuits across a mesh.
However, such systems are still limited
in that they may not in fact be able to
provide all the connections needed to
perform some algorithm efficiently.
They also require extra programming
effort to manage the switching
network.

An additional element to be consid-
ered in the connections among proces-

PHYSICS TODAY / MAY 1984 33

sors is how to keep them in step. For
systems in which processors share ac-
cess to memory, the processors must all
be synchronized, and their operations
properly sequenced. Usually the syn-
chronization and sequencing are under
the control of the operating system of
the computer. However, as 1 men-
tioned earlier, it is also possible to
design architectures that do not work
in lock-step. Rather than controlling
the sequence of operations explicitly,
the processors can be made to wait to
perform their computations until they
have all the necessary information to
proceed (or until another part of the
system requires the result that they
can provide). Such data-flow systems’
typically connect processors to
“source” and “sink” memory units,
where the operations and their inputs
are assembled.

Real systems

Computers with parallel architec-
tures are being realized. There are
over fifty proposals for parallel archi-
tectures from university and govern-
ment laboratory research projects in
this country alone. Companies have
been formed to develop and market
parallel computer systems. Several
major computer companies have re-
search projects aimed at building sys-
tems with parallel architectures, Par-
allel architectures are a major element
of the Microelectronics and Computer
Corporation, a research consortium
formed by about a dozen US computer
and electronic firms (see PHYSICS TODAY,
July, page 65). The famous Japanese
“Fifth Generation” and “Supercom-
puter” projects are focused on develop-
ing parallel computer systems that will
be effective in symbolic and numerical
applications, respectively. There are
also similar national projects in several
European countries. (See the news
story on page 61.)

Commercial architectures. Several ma-
jor computer companies offer systems
containing several CPUs working from
acommon memory (as in figure 3a or b),
These systems are not truly parallel
architectures because they generally
do not support direct use of multiple
processors on a single logical computa-
tion. Rather, the several CPUs are
intended to allow the execution of a
larger number of distinct programsina
given time—that is, to increase total
system throughput.

The best-known currently available
system that can execute multiple in-
struction streams for a single problem
is the Heterogeneous Element Proces-
sor, manufactured by Denelcor, Inc.
Several HEP systemns are being used for
experimental research in parallel for-
mulations of problems of physics. A
single HEP system may have up to 16
("PUs, each of which can uge multiplex

{ERa

ing to work on up to 100 active pro-
cesses or instruction streams concur-
rently, The HEP is programmed in a
version of FORTRAN extended to include
elements of a parallel model of compu-
tation. The operating system uses an
extended form of the TEST AND SET
instruction to regulate the use of
shared data by the instruction streams.
To connect processors to memory ele-
ments, the HEP uses a network switch
based on a packet routing strategy; the
details of the switching arrangement
are a commercial secret,

Research projects. Because I cannot
describe all of the many research pro-
jects fully enpugh to do them justice, 1
will discuss only a few that illustrate
the concepts | have discussed.

The vrTrA project” at New York
University is an example of an archi-
tecture that uses a shared memory
structure. The ULTRA is planned to
contain some 4000 processors connect-
ed by a multi-level switching network
to the memory, which also has some
4000 units. The network is “packet
switched' rather than “circuit
switched," so the connections are estab-
lished only as needed; the nodes carry
embedded processors (with memory) to
resolve conflicts among requests for the
same unit of memory from several
processors. Instead of a TEST AND SET
instruction, which—for 4000 proces-
sors—would produce unacceptably
many "‘busy” signals in accessing mem-
ory, the uLTraA uses a FETCH AND ADD
instruction. Such an instruction re-
trieves a value from memory and si-
multaneously replaces the stored value
with a sum of the stored value and a
value carried with the instruction,
This instruction forms a central part of
the operating system, for example in
the organization and maintainance of
queues of jobs and data. The switching
nodes of the networks are designed to
let several processors FETCH AND ADD
simultaneously, thereby avoiding busy
signals entirely. The vrLTRA group has
used computer models of these ideas to
test them in applications to a variety of
problems in mathematical physics.

The Texas Reconfigurable Array
Computer, being developed® at the Uni-
versity of Texas at Austin, represents a
different approach to a network archi-
tecture. Here the interconnections
between processors and memory units
are established by a dynamic circuit-
switched network. That 1s, the connec-
tions act exactly as fixed buses during
their existence, but the circuit paths
can be created and destroyed at any
time. (One can compare a circuit-
switched network to a traditional tele-
phone system, with connections made
and broken as required for exchanging
information; packet-switched networks
behave more like a mail service, with
data carrying addresses to route the

packet through the system.)

The TRAC network is of a form called
a switchable tree, connecting many
memory units at the “roots” to many
processors at the “leaves.” Because of
its configuration, it is often referred to
as a “banyan network.” The structure
allows memory units to be switched
between processors in a few memory
cycles, providing a communication sys-
tem with very high bandwidth that alsa
does not degrade access to memory
units that are not being shared. The
network avoids conflicts in access to
memory, but still offers a spectrum of
topologies for communication.

In addition to such switched-network
machines, there are systems that incor-
porate fixed networks, The effective-
ness of such systems, of course, depends
very much on whether the particular
topology of the network is appropriate
to the calculation being performed,
But because fixed networks are much
easier to design and much less expen-
sive to build than switched networks,
they are clearly the most cost-effective
architectures for situations in which
algorithms arise that generally match
the topology of the network. Such
processors are, in a sense, intermediate
between the switched-network archi-
tectures and the special-purpose com-
puters, whose processors and connec-
tions are specifically designed for one
class of problems.

Specialized processors. Some prob-
lems in mathematical modeling of
physical systems have a simple and
readily visible model of parallel compu-
tation. In some of these cases the
computations are repeated very many
times for different values of variables
of parameters, but without changing
the model of computation. These cir-
cumstances suggest developing special
computers with architectures that em-
body as exactly as possible the precise
model of computation required by the
application.

A few such devices have been built.
Jorge E. Hirsch and Douglas Scalapino
describe one such device, for perform-
ing Monte Carlo simulations of the
three-dimensional Ising model, in PHYS-
108 ToDAY, May 1983, page 44. Because
of the regular structure of their algor-
ithms, signal and image processing also
clearly lend themselves to specialized
parallel architectures.

Another application for specialized
parallel processing is structural me-
chanics and mechanics of continua, A
typical calculation may involve deter-
mining the deformation throughout &
body or structure when an external
force is applied to it. By dividing the
body into small cubes, say, one can turn
the continuum problem into a discrete
one (figure 6). The deformation of any
one cube is determined by its properties
(elastic and structural) and by the

Structural connections embodied in an architecture. Each cell in the
solid at left is acted upon by forces from its neighbors. The computer
at right contains the same nearest-neighbor connections, so that it
can readily compute the response of each cell (modeled by one of the
processors) when the solid is subjected to an external force, for

example.

forces exerted on it by its nearest
neighbors. The mathematical model of
this structure can be resolved into a set
of linear equations, with each variable
appearing only in equations that also
contain variables for the neighboring
elements. A computer that embodies
this very simplified model is easy to
construct: Assemble an array of ordi-
nary microcomputers; connect each
element in the array to its “neighbors”
so that the network reproduces the
neighborhood relations of the original
system; let each microcomputer query
its neighbors for relevant data to com-
pute the values of the structural pa-
rameters for one element of the origi-
nal system. All processors will then be
solving the linear equations in parallel
to give the response of the system to the
external force.'®

Because the cost of designing and
building special-purpose electronics is
dropping rapidly, we can expect to see
many such computers in the future. At
this time, the principal bottleneck ap-
pears to be one of getting the people
who need the special-purpose comput-
ers together with the people who can
design them.

Future architectures

As I have indicated, communication
among the various elements of a paral-
lel structure is one of the major fea-
tures to be considered in the design.
The communication itself requires
computational work that must be done
in addition to the computations that
would have to be performed in a purely
serial machine—unless, of course, the
computational work has already been
done in designing a fixed network for
the connections. The finer the grain of
the parallel structure, the more the

Figure 6

properties and functions of the network
dominate over those of the individual
processors. For sufficiently fine-
grained parallel structures, the compu-
tational demands of the network may
dominate the computational require-
ments of the system, resulting in less
efficient performance than comparable
but coarser-grained systems. For each
application and model of computation,
there is some ‘‘natural” point where
additional parallelism will not be effec-
tive. The problem is that we do not
know what determines this point for
any nontrivial applications on any
nontrivial architectures. There is a
vast domain of open research problems
here that cry out for collaboration
between computer science and the
physical sciences. The few experi-
ments that have been done are encour-
aging.

It is easy to identify properties of
possible hardware that would yield
potential improvements of two orders
of magnitude in the cost-to-power ratio
over the next decade or s0. An even
larger improvement seems likely with
changes in algorithms and architee-
tures. Realizing these potential im-
provements will depend on knowledge
of how to structure algorithms and
programs into parallel formats. Until
recently, students have been taught to
solve problems in a rigorous step-by-
step fashion. They are taught that
sequential thought patterns are the
easiest to organize and analyze and
thus are most likely to lead to correct
answers. Such patterns of thought,
may, however, be artificial and limit-
ing. For several centuries, mathemat-
ical analysis for focused on sequential
algorithms for numerical computa-
tions. To use the new computer tech-

nologies to their fullest, we must refor-
mulate the traditional methods to
maximize parallel execution: Every
activity of an algorithm should proceed
concurrently, except where an ex-
change of information is required.

References

1. For a more complete history of parallel-
ism, see, for example, R. W. Hockney, C.
R. Jesshope, Parallel Computers, Hilger,
Bristol (1981), chapter 1. This also con-
taing an extensive bibliography of origi-
nal papers, | have therefore cited only a
few here.

2. J. Cocke, D. L. Slotnick, “The use of
parallelism in numerical calculations,”
IBM Research memorandum RC-55, 21
July 1958,

3. P. Weston, Electronics, 22 Seplember
1961, page 46.

4. D, L. Slotnick, C. W. Borck, R. C.
McReynolds, Proc. Fall Jt. Comput.
Conf. 1962. AFIPS Conf, Proc. vol. 22,
page 97; G. H. Barnes, R. M. Brown, M.
Kato, D. J. Kuck, D. J. Slotnick, R. A.
Stokes, Computer, IEEE Trans. Comput,
C-17, 99 (1968).

5. Standard texts generally survey syn-
chronization techniques; see, for exam-
ple, J. L. Petersen, A. Silbershatz, Oper-
ating System Concepts, Addison-Wesley,
Reading, Mass. (1983).

6. T. Hoshino et al., Proc. 1983 Int. Conf. on
Parallel Processing, H. J. Siegel, |. Sie-
gel, eds. IEEE Comput. Soc., Los Angeles
(1983), page 95,

. J. B. Dennis, Computer 13, 48 (1980),

8. A Gottlieb et al., IEEE Trans. Comput.
C-32, 175 (1982).

9. M. C. Sejnowski, E. T. Upchurch, R. N.
Kapur, D. P, 8. Charlu, G. J. Lipovski,
Proc. 1980 Natl. Comput. Conf., AFIPS
Conf Proc. 49 (1980), page 631.

10. H. F. Jordan, P. L. Sawyer, Comput.
Struct. 10, 21 (1979). O

g

PHYSICS TODAY / MAY 1984 35

