Zurich in a dilapidated VW in the middle of the night, lost and broke, and Werner Kanzig met us and took us under his wing. And so it was to be for my stay in Zurich. I found the Swiss to be very helpful in all matters, we made many friends, and never once was I ever treated with disrespect or condescension. In fact, my stipend from ETH quickly proved inadequate, due entirely to my misjudgment of living costs in Zurich, and Walter Granicher and Kanzig quickly (and mysteriously) found an additional stipend for me. In short, I have only fond memories of my stay in Zurich, and we were very sad to leave Switzerland. I have visited ETH every two or three years since my postdoc there, and I have never detected the ostracism Spicer and Barrow complain of.

I found Switzerland to be a country of impeccable standards of honesty, integrity and hospitality—would that I could reverse the unfortunate experiences of Spicer and Barrow.

W. N. LAWLESS CeramPhysics, Inc. Westerville, Ohio

Mathematics as an obstacle

2/84

In connection with the discussion on educating the younger generation in the physical sciences (September, page 25), I would like to mention a general difficulty.

The laws of physics are formulated as differential equations: for example, Newton's laws of motion for a particle, a rigid body and a gyroscope. Maxwell's laws of electromagnetic field are partial differential equations, and so are the laws of gas dynamics.

The teenagers are able to understand

A more exact statement is that they are unable to understand deeply and to love physics if the needed mathematical vocabulary is lacking. Here is my point: In most cases, the calculus begins late and involves difficult and tedious elements of set theory and the theory of limits.

The so-called "rigorous" proofs and existence theorems are much more difficult than the intuitive approach to derivatives and integrals.

The result is that the mathematical ideas needed to understand physics come to teenagers too late. It's like serving the salt and pepper needed for lunch somewhat later—during five-o'clock tea.

I tried to remedy the situation by writing in 1960 Higher Mathematics for Beginners; more than half a million copies were printed. The last edition with I. Yaglom was printed in 1982 and

translated into many languages. But I do not know of any attempt to use it as an official school (college) textbook.

An anonymous group of talented mathematicans invented Bourbaki, called him an army general and wrote under this pseudonym a comprehensive course of modern mathematics, beginning in the first 7 or 10 volumes with set theory and abstract algebra, and ending with calculus.

Perhaps the high military rank ascribed to Bourbaki made his position strong in education. In many countries the difficult ideas of set theory and formal limit theory are exposed to twelve-year old boys and girls. Obviously this is a very difficult barrier to understanding things that are much simpler—the intuitive understanding of the derivative as velocity or of the integral as area. The use of minicalculators could be very useful in understanding calculus. But most important is the interaction of math and basic

A mixed course of physics and calculus (including vector fields) would be a blessing for both physics and mathematics.

The division of mathematics and physics and the Bourbaki approach in teaching math to beginners are disastrous.

> YA. B. ZELDOVICH Academy of Sciences of the USSR Moscow

Polymeric fluids

physics.

2/84

In their excellent article "Fascinating Polymeric Liquids" in January (page 36), Byron Bird and Charles Curtiss mention several phenomena in which polymer melts and solutions behave in unexpected ways. In particular, the behaviors shown in figures 1a, 1b, 1c, and le (rod-climbing, die-swell, and so on) are ascribed to the fact that these fluids have a non-zero first normal stress coefficient. They state that the first normal stress coefficient is positive in polymeric fluids. While this is undoubtedly true in the vast majority of cases, I would like to point out that several cases are known in which this quantity is negative. Roger Porter and I have observed lyotropic solutions of helical polypeptides give rise to large, time-independent negative normal stresses. It was further observed that the sign of the first normal stress difference depended on shear rate, changing from positive to negative and then back to positive with increasing shear rate.1,2 These changes in sign corresponded to observable texture changes in these liquid crystalline solutions when viewed under crossed polars.3 A mathematical model that de-

continued on page 121

TIMING

Model 607 \$725.00

- Differential, Asymmetrical, and Symmetrical Window Modes
- DC Coupled Input
- Internal/External LL Baseline Input
- 25mV to 10V Dynamic Range

Mech-Tronics

NUCLEAR 430A Kay Ave., Addison, II. 60101

For more information WRITE OR CALL COLLECT (312) 543-9304

Circle number 13 on Reader Service Card