Shortest wavelength

In the November issue, a news story entitled "Coherent sources of extreme uv" (page 19) represented the 93-nm stimulated emission from inner-shell electrons in krypton as "the shortest wavelength reported for stimulated emission." However, some previously reported stimulated emissions include 11.741 nm in Al,1 0.15 nm in Cu,2 5.823 nm in Cl.3 18.2 nm in C,4 13 nm in Mg,5 and 1.4 nm in an unspecified material.6 While some of these reports have been disputed, others still have believers.

References

- 1. P. Jaegle, A. Carillon, P. Dhez, G. Jamelot, A. Sureau and M. Cukier, Physics Letters 36A, 167 (1971).
- 2. J. Kepros, E. M. Eyring, and F. W. Cagle, Proc. Nat. Acad. Sci. USA 69, 1744 (1972).
- 3. A. N. Zherikhin, K. N. Koshelev, P. G. Kryukov, V. S. Letokhov, and S. V. Chekalin, Sov. Phys. JETP Lett. 25, 301
- 4. D. Jacoby, G. J. Pert, L. D. Shorrock, and G. J. Tallents, quoted in Laser Focus 16, 24 (1980).
- 5. V. A. Bhagavatula, IEEE J. Quantum Electron. QE-16, 603 (1980).
- 6. C. A. Robinson Jr. Aviation Week and Space Technology, 114, 25 (1981)

LEE W. CASPERSON University of California Los Angeles 12/83 We made it quite clear that we were quoting from an article about to be published by Rhodes and his Chicago colleagues. The quote we excerpted begins with the caveat "To our knowledge this...represents the first..."

—BMS

Inadvertent slight

David S. Heeschen's otherwise excellent obituary of Bart J. Bok (December, page 73) refers to the excellent ANU Siding Spring Observatory as "...the (emphasis added) major observatory south of the equator." If it had read "... one of the ... " instead, it would have avoided making a value judgment that inadvertently slights, among others, the US's own national observatory in the southern hemisphere, the Cerro Tololo Inter-American Observatory; The Carnegie Institution's Las Companas Observatory; the European Southern Observatory (all three of which are located near La Serena, Chile); and the Anglo-Australian Observatory (located on Siding Spring Mountain but autonomous of the ANU). As justifiably proud as Bart was of his accomplishments in the development of Siding Spring Mountain as an astronomical observing site, I'm sure he would have been the first to protest the unfortunate choice of words; after all, virtually all of his observing since 1966 was with the superb facilities at Cerro Tololo.

JAMES E. HESSER Dominion Astrophysical Observatory 1/84 Victoria, British Columbia THE AUTHOR COMMENTS: James Hesser is quite right. I intended to say "...a major observatory..." rather than "... the major observatory..." I did not intend to make a value judgment. DAVID S. HEESCHEN

National Radio Astronomy Observatory Charlottesville, Virginia 1/84

Development of radar

With reference to the letters of W. D. Hershberger and Luis Alvarez in October (page 119) the idea of the radar was first formulated by my teacher. Franz Ollendorff (who was a fellow and vice-president of the IEEE-the first non-American!). After World War I, in the course of work on electromagnetic fields, he realized that reflection of electromagnetic fields could be used to locate reflecting bodies. He also introduced relativity into engineering sciences in Germany and invented the electronic microscope. I am pleased to call attention to the genius of Ollendorff and urge recognition of his rightful place in the history of science.

JUVAL MANTEL Munich, West Germany

Reactions to complaints abroad

The "Complaints from Abroad" concerning life in Switzerland (January, page 109) brought back memories of my year in Switzerland at the University of Zurich (across the street from the ETH). One must remember that aversion to foreigners is a Swiss trait, and recently two national referendums were held to consider (force) the expulsion of all foreign workers. Both failed. but not by much.

IGOR ALEXEFF University of Tennessee Knoxville, Tennessee

I was disturbed to read of the unfortunate experiences of Daniel Spicer and C. H. Barrow at the Institute of Astronomy of ETH in Zurich, Switzerland. While not making any judgments regarding their complaints, I tend to believe their case was the exception rather than the rule at ETH.

2/84

I was a postdoctoral fellow at ETH in the 1960s (Laboratorium für Festkörperphysik), and my experience was just the opposite of that of Spicer and Barrow. My family and I arrived in

CHARGE SENSITIVE PREAMPLIFIERS

FEATURING

- . Thin film hybrid technology
- Small size (TO-8, DIP)
- Low power (5-18 milliwatts)
- Low noise
- · Single supply voltage . 168 hours of burn-in
- MIL-STD-883/B
- · One year warranty

APPLICATIONS

- Aerospace · Portable
- instrumentation
- Mass spectrometers
- · Particle detection
- Imaging · Research experiment
- Medical and nuclear electronics
- Electro-optical systems

ULTRA LOW NOISE < 280 electrons r.m.s.!

Model A-225 Charge Sensitive Preamplifier and Shaping Amplifier is an FET input preamp designed for high resolution systems employing solid state detectors, proportional counters etc. It represents the state of the art in our industry!

Models A-101 and A-111 are Charge Sensitive Preamplifier-Discriminators developed especially for instrumentation employing photomultiplier tubes, channel electron multipliers (CEM), microchannel plates (MCP), channel electron multiplier arrays (CEMA) and other charge producing detectors in the pulse counting mode.

Models A-203 and A-206 are a Charge Sensi tive Preamplifier/Shaping Amplifier and a matching Voltage Amplifier/Low Level Discriminator developed especially for instrumentation employing solid state detectors, proportional counters, photomultipliers or any charge producing detectors in the pulse height analysis or pulse counting mode of operation.

6 DE ANGELO DRIVE, BEDFORD, MA 01730 U.S.A. TEL: (617) 275-2242 With representatives around the world.

Circle number 11 on Reader Service Card