continued from page 15

scribes some of these peculiar phenomena has been proposed by C. E. Chaffey and Porter.4 Other examples of systems exhibiting negative first normal stress difference are given by K. F. Wissburn in a review article on rod-like polymers in the liquid crystalline state.5 An example of a system that exhibits similar effects and does not contain rod-like polymers is described by K. W. Lem and C. D. Han.6 They observed negative first normal stress differences (and also sign changes) in concentrated suspension of polyethylene in unsaturated polyester resins. I am not aware of any cases in which fluids exhibiting negative first normal stress difference have been tested in non-rheometric experiments such as the ones described by Bird and Curtiss.

References

2/84

- G. Kiss and R. S. Porter, J. Poly. Sci. Polym. Symp. 65, 193 (1978).
- G. Kiss and R. S. Porter, J. Poly. Sci. Phys., 18, 361 (1980).
- G. Kiss and R. S. Porter, Mol. Crys. Liq. Crys. 60, 267 (1980).
- 4. C. E. Chaffey and R. S. Porter, to be published.
- K. F. Wissburn, J. Rheology, 25, 619 (1981).
- K. W. Lem and C. D. Han, J. Rheology, 27, 263 (1983).

Gabor Kiss Celanese Specialty Operations Summit, New Jersey

More on radon hazard

Whenever possible, disagreements about facts should be resolved by appeal to data.

In November (page 13), Leonard Katzin and Robert Pohl disagree about the importance of radon release from mining tailings. Pohl refers to an EPA report, which is published—though not in a refereed journal—and which has been widely criticized. That report depends primarily upon calculation, and, as is appropriate for an agency set up to defend the environment, the calculation is designed to be—and to err—on the safe side. Those measurements referred to in the report to justify the calculations are over 10 years old and fall below the calculation.

In the last 10 years, the track-etch technique has become available to all. According to an advertisement in front of me, a measurement of the average level of radon and daughter products can be made for \$50. Radon levels have now been measured in 50 000 houses throughout the world. Some of these have levels much higher than have

been suggested near mining tailings.

This experience suggests to me that all concerned with mining tailings, EPA, American Mining Congress, Pohl and Katzin leave their offices and return to the laboratory; when the data are in, we can regulate first those places with the highest combination of human occupancy and radon level.

RICHARD WILSON Harvard University Cambridge, Massachusetts

Physics in decline

2/84

Recently, there have been many discussions on the educational crisis and decline in physics (September's special issue; February, page 57). Although we would like to be optimistic, our current situation should not be compared with physics before Sputnik. In 1957, the terrors of Joseph Stalin and Adolf Hitler were fresh memories. Russian tanks had just invaded Hungary. Out of despair, perhaps, many of us felt the necessity of nuclear weapons. The transistor had also been recently invented. Space physics (due directly to Sputnik) was merely the icing on the cake of nuclear and solid-state physics. Furthermore, there were no worries about huge Federal deficits, high inflation, high interest rates, foreign trade deficits, depletions of oil reserves and the decline of such basic industries as steel.

On the other hand, the current situation may be somewhat similar to physics at the turn of the century. Before Albert Einstein, H. A. Lorentz and Henri Poincaré had too many hypotheses. Today, we have too many quarks (and colors, and so on). The vacuum was filled with ether then, and it is filled with virtual photons now. Despite great efforts, experimental confirmations of key theoretical predictions have often been inconclusive (magnetic monopoles, fractional charged quarks, proton decays, electric dipole moment of neutrons, and so on). Obviously, we could use another Einstein. But Einstein might have troubles surviving today. Any research program involving relativity, photoelectric effect and Brownian motion simultaneously would be judged as incoherent. It is very difficult to write up $E=mc^2$ as a grant proposal. Lacking technical qualifications, he might not even get his patent-office job. (The director appreciated his deep knowledge of electrodynamics only after a long and grueling interview.) Such studies also require great concentration. Willard Gibbs was able to live for 15 years on the investments from a modest inheritance (the equivalent of a quarter of million dollars today, shared between brothers and sisters) without receiving

Workshop

THE USE OF SUPERCOMPUTERS IN THEORETICAL SCIENCE

University of Antwerpen,
Belgium
July 30-August 1, 1984
Conference Center "Priorij
Corsendonk"
Antwerp-Belgium

Scientific Committee:

- J. T. Devreese (Chairman), P. Van Camp
- H. Nachtegaele

Further information:
International Advanced
Study Institute
% Mrs. R.-M. Vandekerkhof
Department of Physics
University of Antwerpen
Universiteitsplein 1
BELGIUM—2610 Wilrijk
(ANTWERPEN)

NATO ADVANCED STUDY
INSTITUTE
IMPROVED METHODS FOR
EXAMINING THE
SUBMICRON WORLD
BADDECK AND ANTIGONISH,
NOVA SCOTIA, CANADA
JULY 28 TO AUGUST 11, 1984

This institute is designed to encourage cross fertilization of ideas between established methods of examining the submicron world such as high resolution electron microscopy and newer techniques such as soft x-ray microscopy.

It is intended for graduate students, postdoctoral fellows and researchers from universities, private and governmental laboratories.

Financial help is available for a limited number of students mainly to help with travel expenses. Full support will be possible in a few cases. For further information write: Prof. D. M. Shinozaki, Faculty of Engineering Science, The University of Western Ontario, London, Canada N6A 5B9. Telephone (519) 679-3205.