would become ineffective at relatively high temperatures. In 1961 Edwards and John G. Daunt showed theoretically that even at absolute zero the dilute phase should contain 6% He3. In 1965, Edwards and his colleagues confirmed this experimentally. These insights greatly encouraged the development of dilution refrigerators, which now operate routinely to temperatures of a few mK. Edwards has carried out a number of other definitive investigations on helium-3 and helium-4 at low temperatures. Most recently he has been studying the surfaces of liquid and solid helium, using, for example, elastic and inelastic reflection of atomic beams of helium to investigate the structure and properties of the surface.

Han to receive first Dillon Medal

Charles C. Han, a chemist at the Center for Materials Science of the National Bureau of Standards, received the John H. Dillon Medal of the APS Division of High Polymer Physics at the Detroit APS meeting, March 1984. The medal recognizes Han's "outstanding accomplishments and unusual promise in research on polymer physics."

This new award is given in honor of John H. Dillon, one of the founders and the first chairman of the APS Division of High Polymer Physics. The award is restricted to candidates whose last degree was obtained not more than 10 years prior to the date of award.

Han received his PhD in physical chemistry from the University of Wisconsin in 1974. Since that time, he has been a member of the NBS scientific staff at Gaithersburg, Maryland. Han is internationally known for his scientific contributions in applying quasielastic light scattering and small-angle neutron scattering to problems in polymer physics.

Laser Institute of America awards 1983 Schawlow Medal

The Laser Institute of America has named Arthur H. Guenther as the recipient of its Arthur L. Schawlow Medal for 1983. The medal honors distinguished contributions to applications of lasers for science, industry or education.

Guenther received his BS from Rutgers University in 1953 and his PhD from Pennsylvania State University in 1957. Since then he has been at the Special Weapons Center at Kirkland Air Force Base, for two years in the Air Force and subsequently as a civilian. He has been chief scientist of the Weapons Lab since 1974.

Think about it! Synchrotron capability in your lab.

LEXIS, the highlyreliable, low-cost pulsed x-ray source from Maxwell, provides synchrotron capabilities . . . in your lab.

LEXIS offers compact size and moderate cost . . . with high intensity, spectral flexibility and discrete tunability. And it's available in your lab, every day. Materials research . . .

spectroscopy . . . diagnostics . . . are the possibilities really endless?

Call Bill Fox at (619) 279-5100

MAXWELL®

MAXWELL LABORATORIES, INC.

8888 Balboa Ave., San Diego, CA. 92123 Phone (619) 279-5100 TWX 910-335-2063

Representatives: UNITED KINGDOM, Airad Instruments, (44) (635) 30345 Newbury WEST GERMANY, Carl Baasel Lasertechnik KG, (49) (89) 527051 TRLV, de-Electronic Instruments, s.r.l., 6469341/2/3-6468546, JAPAN, Densho Kaisha, Ltd., (81) (34) 436-0041 ISRAEL, E.I.M, International Electronical, (03) 774041-2-3-4, SWITZERLAND, GMP SA, 021/33 33 28. FRANCE, Optilas, (33) (6) 077.40.63 NETHERLANDS, Optilas B.V. 01710-2
12 34. EASTERN EUROPE, Renata Braumann GMBH, 089/1571516. SWEDEN, Saven AB, TLX 856-71840