matter in the universe. While acceptance of this concept was not immediate, it has come to play a central role in cosmology. He also concluded, from studies primarily with PhD students, that the luminosity at which a change in slope of the luminosity function of a cluster occurs is a universal constant and can thus serve as a standard candle for distance determination.

As recognition of Abell's prominence in cosmological research, he served as president of the Commission on Cosmology of the International Astronomical Union, 1979–1982, and also as president of the Astronomical Society of the Pacific.

Another outgrowth of Abell's intimate familiarity with the Palomar Sky Survey was his discovery of a class of "old" planetary nebulae having very low surface brightness. These objects, also known by their "Abell numbers," have central stars that are among the hottest we know. Abell and Peter Goldreich were the first to propose that all planetary nebulae, with their nuclear stars, belong to a normal stage in the evolution of population-II stars within a certain mass range. This concept has also had wide acceptance.

The dissemination of astronomical knowledge was deeply important to Abell. Shortly before his death, Abell had taken over the editorship of the Astronomical Journal. He was a gifted, dynamic lecturer who, despite high standards, attracted large numbers of students to the UCLA survey course, "The Nature of the Universe." Very soon after joining the faculty at UCLA, dissatisfied with the pre-World-War-II texts available for the survey course, he wrote the first successful "new generation" text. Abell also served as chairman of the Committee on Education in Astronomy of the American Astronomical Society, participated for many years in the Society's Visiting Lecturer program at smaller colleges throughout the country, and organized and participated in numerous lecture series in the University of California Extension. Particularly dear to Abell was a summer program for gifted high-school science students, which he helped develop and participated in every summer for many years.

Not content to inform people about science on many fronts, Abell became convinced of the importance of publicizing what science is not. Shocked by the wide public acceptance of fake science, he insisted that an effort be made to help people think more clearly in general, not just about science, and he became an active worker against pseudo-science. He studied astrology so that he could take on astrologers on their own grounds, including television debates, and wrote many items on pseudo-science.

George Abell was constitutionally unable to remain uninvolved. He was a warm, open, generous human being.

Daniel M. Popper University of California Los Angeles

Haskell A. Reich

Haskell A. Reich, a member of the research staff of the IBM Thomas J. Watson Research Center since 1955, died on 11 October 1983 at the age of 57.

Reich was educated at the Bronx High School of Science, The City College of New York (BS 1949) and Columbia University (PhD 1956). His work at Columbia consisted of atomic-beam studies of the hyperfine spectra of the metastable states of hydrogen and deuterium. These experiments provided accurate results to test further the predictions of quantum electrodynamics.

His interests subsequently turned to low-temperature physics. His experiments on the diffusion of helium atoms in solid helium showed that this diffusion persisted to even the lowest temperatures. This research was important in improving understanding of quantum solids. He then joined the scientific team investigating superconducting computing circuits and during this period became involved in the use of computers in the design, layout and fabrication of complex electrical circuits.

Reich subsequently became an active and enthusiastic protagonist in the work on computer-aided design techniques. He worked closely with development and manufacturing groups to help them to improve their utilization of these techniques: He developed unique programs for the fabrication of special mechanical parts, and he was responsible for a team effort to apply these methods to the instrumentaion and apparatus required for other research projects. His associates will particularly remember his enthusiasm and his dedication to his work.

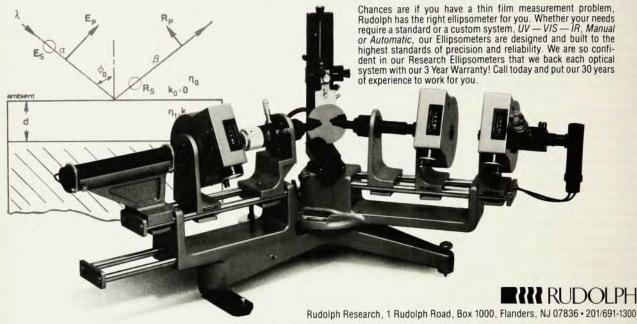
A. H. NETHERCOT IBM Thomas J. Watson Research Center Yorktown Heights, New York

Homer E. Newell

Homer E. Newell, who died this past summer at age 68, had a profound impact on the scientific returns from the US space program. It was fortunate for this country that an individual of his ability and understanding helped plan and execute scientific investigation from space from 1947 to 1973.

Newell received his doctorate in physics from Harvard in 1940 and, after teaching at the University of

Maryland, joined the Naval Research Laboratory in 1947. The opportunities for space research were expanding in the late forties, thanks to rapid improvements in sounding rockets. These advances led scientists in the International Union of Geodesy and Geophysics to organize an international collaborative effort. This program, started in 1954, was given impetus by focusing on results from a single year, 1957, which became known as the International Geophysical Year (IGY). It was during an IGY meeting in October 1957 that Anatoly Biagonravov stunned the participants by announcing the launching of Sputnik. During this dramatic period, Newell was acting superintendent of the Atmospheric and Astrophysical Division of NRL and a participant in the IGY.


The response to Sputnik was remarkably swift. Congress enacted legislation that established NASA a year later, in 1958, with Keith Glennan as its administrator. Newell transferred from NRL to NASA during the first month of its operations to assume responsibility for its scientific program, a role he maintained until his retirement from NASA in 1973.

Although he assumed additional responsibilities during his 15 years at NASA, his central interest was always the use of space technology for scientific investigation. Soon after James Webb became Administrator, Newell became the director of scientific satellites, and in 1963 he became the associate administrator for space science and applications. From 1967 to 1973, Newell was the associate administrator of NASA. In this final position he worked with all elements in NASA to plan a space program that would encourage and promote national and international scientific investigation. His legacies include communication and meteorological satellites in addition to a wide variety of scientific payloads carried on Earth-orbiting satellites, lunar explorers, and planetary probes and landings. He also played an important advisory role in the scientific achievements derived from manned orbital and lunar flight.

His accomplishments were not limited to the direct return from the space program. His experience at NRL gave him the credibility needed to convince military research leaders of the importance of an "open" space policy. The great surge in our understanding of our space environment could not have occurred without unfettered communication between scientists here and abroad. The routine accessibility of scientific information from NASA's space program is another of his important legacies.

Newell performed heroic service, translating the expectations of the

FROM 1Å TO 60,000Å FILM MEASUREMENT SOLUTIONS BEGIN WITH RUDOLPH

Circle number 41 on Reader Service Card

Circle number 42 on Reader Service Card

St. Paul, MN 55114 USA
TELEX: 955439 INTL DIV; ATTN: TRI
Phone: 612-645-7193

TRI Research, 2459 University Ave.,

AUTOMATED CRYOGENIC SYSTEMS

Circle number 43 on Reader Service Card

Our new choppers won't give you the jitters.

Our highly reliable 220 Series Light Beam Choppers have much lower phase jitter (±.1° to 200 Hz, ±.5° to 3 kHz) than other choppers.

Other features include six resilient spring steel chopper blades; frequency range of 0.1 Hz to 6 kHz; separate, compact chopper head for easy mounting. The Model 221 additionally provides phase-locked "electrical shaft" operation of two heads to synchronize and phase adjust chopping at separate points in the beam paths. Model 222 allows precise linear sweeping of the chopping frequency.

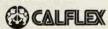
Ithaco's 220 Series is designed for a wide range of low-level, electro-optical applications with lock-in amplifiers, photon counters and other signal processing instruments.

For more information, call or write Ithaco, Inc. 735 W. Clinton St. P.O. Box 6437 Ithaca, NY 14851-6437.

Phone (607) 272-7640. TWX 510-255-9307.

143-PT-284

Circle number 44 on Reader Service Card


Get Calflex bellows complete with development and design help.

Whether you need hydroformed, edge-welded or electrodeposited bellows, Calflex can help solve your bellows-related design problems by providing design, development and prototype services. To suit your applications, Calflex offers a variety of metals and alloys (brass, bronze, stainless steel, nickel alloys, beryllium copper, etc.).

Large or small, bellows are made with craftsmanship plus modern machining, soldering, brazing and welding methods. Bellows and assemblies are tested for leaks, spring rate, cycle life and other requirements. Calflex quality control assures that every bellows or assembly will meet or exceed your specifications.

Applications include flexible couplings, aneroids, volumetric displacement compensators, expansion joints, rotary shaft seals, valve seals, thermostats, pumps, instruments, vacuum chambers, and control/testing devices.

For information and a bellows catalog, contact Calflex. An applications engineer will call.

26111 Evergreen, Suite 220 • Southfield, MI 48076 • (313) 353-1414

Circle number 46 on Reader Service Card

scientific community into affordable, workable space experiments. His stature eased the tensions between NASA and outside scientists that resulted from the agency's practice of making scientific decisions internally, not by the customary process of peer review. The practice was adopted partly because of its use in NASA's predecessor, the National Advisory Committee on Aeronautics, and partly because of the technical difficulties involved in integrating experiments into viable spacecraft.

ROBERT C. SEAMANS JR Massachusetts Institute of Technology

Charles Donald Shane

Charles Donald Shane, distinguished astronomer and director of the Lick Observatory from 1945 until 1958, died 19 March at the age of 87.

Shane was born on 6 September 1895; he graduated from the University of California, Berkeley, in 1915; served in World War I, and received his PhD at Berkeley in 1920. Shane and Mary Lea Heger were married during their joint tenures as graduate students in astronomy in Berkeley. Charles Shane joined the Berkeley faculty in 1920, became chairman of the astronomy department and served on several of the more important faculty committees. During World War II, he became assistant director of the Radiation Laboratory at Berkeley, and later personnel director at the Los Alamos Laboratory, where he reported directly to General Leslie Groves.

Shane was appointed director of the Lick Observatory in 1945. Those of us who returned to the isolation of Mt. Hamilton immediately after the war found a dreary, disorganized institution. Under Shane's firm administration, the Mt. Hamilton "inmates," as he called the population, grew from the traditional 50 or so to 105, the 120-inch Shane telescope was built, and a new, young staff of astronomers was gathered. New buildings appeared; two old ones were removed. The Lick Observatory had run down; but Shane rewound it and then provided the momentum that still abides.

Although most of Shane's days on Mt. Hamilton were occupied by administration, with the assistance of Carl Wirtanen he managed to find time to employ the 20-inch Carnegie astrographic telescope to photograph the entire sky observable from Mt. Hamilton. Concurrently, he used the plates for the famous Shane-Wirtanen galaxy counts. These counts, which cover a magnitude range to 19.5, are still the most complete and most carefully unified example of this type of information available to astronomers.

Charles Donald Shane and Mary Lea Shane in a photograph taken by Donald E. Osterbrock in July 1982 at Scotts Valley, California (courtesy Lick Observatory, University of California).

Shane's genius as an administrator was tapped by the Associated Universities for Research in Astronomy when he served as its first president from 1958 to 1962. During that time, he established the Kitt Peak National Observatory and the southern hemisphere branch, the Cerro Tololo Inter-American Observatory. Kitt Peak has subsequently become one of the largest, best equipped, most active and most respected observatories in the world.

Shane was a generous, modest and kindly man, with a fine, robust sense of humor. He is greatly missed by his colleagues, but his important accomplishments ensure that he will be remembered by future generations of astronomers.

> GERALD E. KRON Pinecrest Observatory

Mary Lea Shane

Mary Lea Shane, born Mary Lea Heger, 13 July 1897, died at the age of 86 on her birthday in 1983.

Shane received from the University of California in Berkeley her BA in astronomy in 1919 and her PhD in 1925. She married Charles Donald Shane in 1920, starting an association that benefited astronomers and their science for the next 63 years.

As a graduate student, she discovered that the spectra of some stars contained sharp sodium D lines that did not share the radial velocity shift of the star. Her interpretation of the phenomenon followed soon after—the lines originated in interstellar clouds of a material that contained neutral sodium—and contributed in an important way to the understanding of interstellar material. After her marriage, though, she decided to devote herself to her family and her husband's career.

By the time Shane became a resident

of Mt. Hamilton, the Lick Observatory had had 57 years of colorful history. During this period, almost all documentation, even the most trivial, had been saved and stored in a growing collection of redwood boxes deposited in the lower level of the 36-inch refractor dome. A diary dated just after the 12inch telescope had come into service in 1881 recorded: "Arrived today-two loads of sand-one king." The king was King Kalakaua of Hawaii, who was interested enough to take the awful 26mile trip to Mt. Hamilton and who became one of the first persons to look through the 12-inch telescope. Mary Shane realized what a treasury of information was contained in those boxes, conceived the idea of the Lick Archives, and undertook the task of organizing them. The Archives were given a permanent site at the library of the University of California, Santa Cruz, and renamed The Mary Lea Shane Archives in 1982.

GERALD E. KRON Pinecrest Observatory

John C. Jamieson

John C. Jamieson of the University of Chicago died on 26 June 1983 in Chicago after an extended illness. He was born in 1924 in Missouri and entered the University of Chicago as an undergraduate in 1940. He returned there after the War, finishing his undergraduate work and continuing as a graduate student in the geology department. He received his doctorate in 1952 and later joined the staff of the department (now the department of geophysical sciences). He became a full professor in 1965.

Jamieson's experimental research centered on the determination of the crystal structure and elastic moduli of minerals and metals under high pres-