Nuclear dynamical supersymmetry

Until recently, supersymmetry existed only as a theoretical concept; recent studies of
atomic nuclei hint that it may be a physical reality.

Richard F. Casten and Da Hsuan Feng

One of the goals of physics is to
establish simple sets of laws that pro-
vide a unified picture of apparently
different physical phenomena. In the
realm of elementary particle physics,
attempts have been made over the last
decade to unify all known forces in
nature by a common highest symmetry
known as supersymmetry. In recent
years these ideas have become quite
widespread in various branches of
physics, ranging from investigations of
the early universe to polymer physics.
This burgeoning and diversified inter-
est was recently exemplified at the
Workshop on Supersymmetry in Phys-
ics' at Los Alamos, New Mexico, in
December 1983, which brought togeth-
er physicists from many different disci-
plines.

Despite the appeal of supersymmetry
schemes as unifying theoretical devices
in physics, there has been little or no
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empirical evidence suggesting their va-
lidity. Recently Bruno Zumino, one of
the first to develop the concept of
supersymmetry, stated” that “super-
symmetry is a general framework rath-
er than a specific theory. What we
need is an equally appealing specific
model whose consequences could be
tested experimentally.” The recent
postulation by Francesco lachello,®
that the concept of supersymmetry
may also be applicable to atomic nuclei,
alters this situation because, as we
shall show, this is a realm wherein such
concepts can indeed be extensively
tested empirically.

The specific supersymmetry schemes
relevant to nuclear physics differ some-
what from those used in other branches
of physics, but the fact that it is possible
to test their predictions in detail in
nuclear-structure physics lends wider
interest to this field. In this article we
discuss supersymmetry and its empiri-
cal testing in certain heavy nuclei. The
various experimental techniques used
in this process represent a fine example
of the richness of nuclear spectroscopy,
for they involve completely different
vet complementary approaches:
probes that are selective for specific
features of the nuclear structure and
those that are not selective. In the
last three decades nuclear physics has
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made enormous strides both in the
accumulation of vast amounts of data
on the properties and excitation modes
of atomic nuclei and in the develop-
ment of models to interpret these data.
A longstanding central issue, both from
the theoretical and experimental
points of view, has been the study of
“collective” states: modes of nuclear
excitation in which many protons and
neutrons participate simultaneously
and coherently. They contrast with the
so-called "single-particle” excitations
in which only one nucleon (proton or
neutron) alters its orbit in the nucleus.
Although highly successful models that
describe collective properties have ex-
isted since the 1950s, the appearance in
the last decade of a new model—the
interacting-boson model proposed® by
Akito Arima and Iachello in 1974—has
revitalized the field. The new model
provides a unified description of seem-
ingly different manifestations of collec-
tive motion in nuclei and a deeper
understanding of the underlying dyna-
mical symmetries (see the box on page
28 for a discussion of this concept in a
familiar context). With use of the
interacting-boson model, it is, in fact,
now possible to describe succinctly the
symmetry structure of broad ranges of
nuclei. This is illustrated by the color-
coded symmetry chart of the nuclei in
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Symmetry structure of nuclei from mass numbers 140 to 208. In the lower right is shown the symmetry triangle for
the interacting-boson model: Each vertex represents one of the three symmetries of the model, and the legs denote
transition regions. Specific nuclei can be placed at the appropriate locations in the triangle. The colors shown in the
triangle are used in the accompanying chart of nuclides to indicate the approximate symmetry characteristic of the well-
studied nuclel in the rare earth and Os-Pt regions. The crosses and dots indicate nuclei that are thought to reflect one
or another of the supersymmetries discussed in the article. (Thanks to David D. Warner for help in designing this

figure)

figure 1 that will be discussed in more
detail below. Moreover, the interact-
ing-boson model leads to new and
surprising predictions that have in-
spired new measurements and that
have, in turn, been confirmed by them.
One of the most interesting aspects of
this research is the proposition that the
dynamical symmetries may also be
extended to the wider concept of super-
symmetry schemes and, furthermore,
that the existence of such symmetries
may be verified by experiments. In this
article we describe this new model and
the status of current supersymmetry
ideas in nuclear physics. First, how-
ever, we present a briefl discussion of
nuclear models and of the interacting-
boson model.

Nuclear models

A principal goal of nuclear physics 1s
the construction of models that explain
the observed structure and excitation
modes of the atomic nucleus in terms of
the behavior of its constituent protons
and neutrons.

Traditional models. For the past 35
years the generally accepted standard
has been the shell model proposed” in
1948 by Maria Mayer, Otto Haxel,
Hans Suess and Hans Jensen, which in
its simplest form envisages the nucleus
as an assemblage of nucleons (neutrons

or protong, considered independently)
that orbit the nuclear center of mass in
a mean central potential in a fashion
analogous to the planetary model of
electrons orbiting an atom in the Cou-
lomb potential. Figure 2 shows some of
the energy levels for these orbits for the
50th through the 126th nucleon. These
orbits are labeled by several quantum
numbers, one of which is the total
angular momentum ; of the orbit. To
determine the properties of a nucleus—
such as ground-state mass, excited-
state energies and spin-parity quantum
numbers ( /7 —is then extremely sim-
ple. The nucleons are placed in succes-
sive shell-model orbits, starting with
the lowest one. The Pauli principle,
which applies to all fermions (nucleons)
only allows 2/ + 1 nucleons in an orbit
of total angular momentum j. In addi-
tion, the nucleon-nucleon interaction
is such that pairs of protons or of
neutrons tend to occupy orbits with
equal but opposite angular momenta,
resulting in a total angular momentum
of zero. Thus the angular momentum,
., of a nuclear ground state with many
nucleons is equal to 0 if the number of
both protons and neutrons is even
(even—even nucleus), and -/ equals the
angular momentum j of the last un-
filled orbit if either the proton or
neutron number is odd (odd-even nu-

PHYSICS TODAY / NOVEMBER 1984

Figure 1

cleus). Excited states in an odd nucleus
can be formed by changing the orbit of
this last nucleon. The extra energy
required can simply be read off from
figure 2. Note that the orbits tend to
group into clusters or shells: just as in
the atomic case. When the number of
nucleons is such that one of these shells
is filled, a particularly stable nucleus is
formed, as is also true in the case of
closed shells in atoms. In nuclei that
have just a few nucleons in the unfilled
shell (few "valence” nucleons), the sim-
ple picture just described is indeed
verified. However, in nuclei with many
valence nucleons, one frequently ob-
serves a different type of structure
characterized by collective states that
involve many nucleons in combined
motions such as rotations or vibrations.
Such states are widespread throughout
the periodic table and they appear in
both even-even and odd-even species.
Thus they are extremely important to
understand. In fact, much of the his-
tory of the study of medium- and heavy-
mass nuclei in the last 20 years or so
has centered on attempts to elucidate
the structure and systematic properties
of their collective states.

One method utilizes the shell-model
approach extended to include the or-
bits, not just of the last unpaired
nucleon, but of all those valence nu-
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cleons outside the "core,” which is
formed by the closed-shell nucleus.
This approach is illustrated on the
right in figure 3. In carrying it out, all
the possible ways of constructing a
given angular momentum from such
multi-particle configurations must be
considered. Unfortunately this can of-

ten lead to insurmountable problems,
because the number of possible configu-
rations rapidly becomes astronomical
as the number of valence nucieons
increases. To quote a famous example
given® by Igal Talmi: in Sm'™, which
has 22 valence protons and neutrons,
the number of states with spin-parity

3
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Dynamical symmetry is widely used in
various branches of physics (for example,
elementary-particle and atomic physics).
Although the use of dynamical symmetry
may involve complicated mathematical
manipulations, its concept is simple and
straightforward as can be seen from the
following example. The more sophisticat-
ed applications are mere extensions of
precisely the same concept.

According to quantum mechanics, there
are three angular momentum operators,
L, L, and L., which satisfy the "commu-
tation relations™

where the operator symbol [4, 8] means
AB —BA. From these three operators,
one may define another operator
L-L(=L"+L,"+L.%), which pos-
sesses the important property of commut-
ing with L, L , and L. separately. This
means that the angular momentum eigen-
state |/, m) is simultaneously an eigenstate
for the operators L - L and one of the three
angular momentum operators. Generally,
L. is chosen for convenience. The quan-
tum numbers / and m are the usual angular
momentum quantum number and its z
component, with / a positive integer and m
equaling —/ ... +/ The angular repre-
sentation of such a state is the well-known
spherical harmonic Y, (f, &),

The theory of angular momentum may
also be stated in the language of dynami-
cal symmetry based on a more abstract
theoretical scheme. The mathematical un-
derpinning Is the concept of an "algebra,"
which is defined by its "basis" or ""genera-
tors™ a sel of operators that satisfy appro-
priate commutation relations such as
those for the operators L,, L, and L,.
From the generators, one may construct a
so-called Casimir operator such as L-L

Concept of Dynamical Symmetry

Eigenvalues of the angular momentum
algebra O(3) and its degeneracy breaking
decomposition into O(2) in the presence of
a magnetic field, as, for example, in the
Zeeman effect, in which atomic energy
levels are split.

that commutes with all the operators in the
basis. The next task is to construct the so-
called irreducible representations of the
algebra. This is carried out with the con-
cept of algebraic chains (or '‘chains,' for
short). Roughly speaking, this corre-
sponds to finding a (sub)algebra whose
basis is a subset of the original basis. The
standard notation of “contain’ is used to
represent a chain; G,DG, where G, de-
notes an algebra and G, its subalgebra.
Once the chain is constructed, there exist
"standard" algebraic methods to construct
the irreducible representations. Thus in
this language, the original algebra of angu-
lar momentum is the so-called orthogonal
algebra in three dimensions, O(3). The
basis of the O(3) algebra consists of L, L,
and L. and the Casimir operator L - L; the
subalgebra is O(2) whose basis (with only
one operator) is L,. Thus we have the
chain O(3) 20(2). The basis of the irredu-
cible representations are [/ m) with / a
positive integer and m equaling
— /... + 1 Ineffect, dynamical symmetry
means that the Hamiltonian of a system is
constructed from the Casimir operators of
a chain. In the case of O(3), the simplest
Hamiltonian is

H=CL:-L+Cul,

This Hamiltonian exhibits a crucial property
of chains for nuclear physics (see the
adjoining figure), namely that each step
breaks some of the degeneracy, distin-
guishing formerly degenerate levels ac-
cording to an additional guantum number.
In the present example, the eigenvalues
for the Hamiltonian given above are
C\l+ 1)# + Com# Clearly, if C, vanish-
es, the system is 'rotationally invariant"
and has for each /a (2/ + 1)-fold degener-
acy, If C; differs from 0 (for example, if an
external magnetic field is switched on),
that is, if the O(3) symmetry is broken by
the O(2) symmetry, then the degeneracy is
lifted.
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assignment 2% alone amounts to
346 132 052 934 889.

An alternative approach is the for-
mulation of models based on a geomet-
ric concept (analogous to the well-
known liquid-drop model), proposed” in
the early 1950s by Aage Bohr and Ben
Mottelson. In these models the nucleus
is assigned a shape and is allowed to
undergo rotations or vibrations or both,
This approach is appealing because it
offers a simple visual picture and is
also, in many cases, extremely simple
to deal with. On the other hand, while
geometrical schemes can interpret the
excitations of a given nucleus once its
shape is given, it is difficult in such
schemes to predict a priori the behavior
of any nucleus or, in particular, of a
sequence of nuclei of neighboring
masses. For this reason, other ap-
proaches have frequently consisted of
attempts to truncate the full shell
model by considering only a subset of
available orbits. Unfortunately, in
most cases these truncation schemes
are themselves so exceedingly complex
that, even if lengthy calculations repro-
duce the empirical situation, the re-
sults offer little physical insight into
the basic nuclear structure.

Interacting-boson model. This is
where a new model* proposed by Arima
and Iachello and known as the interact-
ing-boson model enters. On the one
hand, its basic assumptions place it in
the realm of truncation models. On the
other hand, its simplicity and its deep
connection to geometry” confer on it
the attractive features of collective
models. Many aspects of this model
and its extension to odd-eyen nuclei—
including geometrical interpretations,
applications to specific nuclei and mi-
croscopic shell-model formulations—
are exhaustively discussed in the pro-
ceedings® of three major international
conferences devoted to the subjects,
and in a number of original papers.'®

The basic assumptions* of the inter-
acting-boson model are:

» Only valence nucleons are consid-
ered.

P Most of the possible configurations
that the valence nucleons can form are
ignored. In the model, the valence
neutrons behave in such a way that,
although they are fermions, they can
be treated in pairs as effective bosons.
The protons likewise form proton bo-
sons. These bosons can have two
“states” with angular momentum 0
("s” bosons) or 2 ("d” bosons). The s
bosons are analogous to Cooper pairs
and the d bosons can be viewed as a
generalization of this analogy for non-
zero angular momenta. Note that this
assumption is an enormous truncation
of the shell model. Its adequacy is
judged by the successes and failures of



the model and by microscopic shell-
model calculations themselves.

» The model allows for simple interac-
tions between these bosons—or nuclear
pairs—in which, for example, an s
boson is changed into a d boson or two d
bosons into two s bosons. The number
of bosons Ny characterizing a nucleus
is equal to the sum of the number of s
bosons (1, ) and the number of d bosons
(ny) and is given by half the number of
valence nucleons. This number is con-
stant for a given nucleus.
Calculations in the interacting-boson
model can be carried out by the brute-
force method of directly solving the
Schrodinger equation defined by the
basic degrees of freedom; that is, by
diagonalizing the Hamiltonian to yield
eigenvalues, eigenfunctions, transi-
tion rates and the like. This Hamil-
tonian contains several parameters
that can be chosen either by fitting
them to empirical data or, ideally, by
reference to microscopic shell-model
calculations. It involves only simple
interactions between the s and d bo-
sons. A slightly simplified form of this
Hamiltonian is given by

H=eny —xQ - Q—«xL-L+«"P-P

where n, is the number of d bosons, L is
the boson angular momentum operator
and @ and P are boson operators that,
roughly speaking, correspond to qua-
drupole and pairing interactions
between bosons. In practice these oper-
ators are written in terms of the
“creation” and “annihilation” opera-
tors discussed below. To solve this
model, one simply chooses appropriate
values for the parameters describing
each interaction term and diagonalizes
the Hamiltonian.

In many cases, however, it is better to
use an alternate approach that exploits
the fact that the algebraic structure of
the interacting boson model leads natu-
rally to the concept of dynamical sym-
metry. This concept is illustrated in
the box on page 28; its use in the
interacting-boson model is more com-
plex but is a direct generalization of the
same ideas. This approach to collective
states, schematically illustrated on the
top left in figure 3, only works well for
certain very special nuclei, but is of
more general interest because it pro-
vides a framework of ideas from sym-
metry or geometry by which one can
understand the calculations for much
broader classes of nuclei. To pursue
this idea of dynamical symmetry in the
interacting-boson model, it is conven-
ient to represent the s and d bosons by
the so-called boson "creation” and
“annihilation” operators s',s and d’ ,
d, (u corresponds to the azimuthal
quantum number, with values — 2
—1, 0, 1, 2). Then the 36 operator

Portion of the energy levels of the
nuclear shell model. Each level is labelled
by gquantum numbers, n, / and /. 11 is the
principal—or shell—quantum number, / is
the orbital angular momentum, indicated by
letters according to the usual notation in
atomic physics (s, p, d, and so forth), and /
is the total angular momentum given by the
vector sum of / and the intrinsic nuclear
spin of %%, The circled numbers are the
"magic™ numbers of nucleons (either
protons or neutrons) corresponding to a
closed shell. The orbits corresponding to
the U(6/4) and U(6/12) supersymmetries
discussed In the text are indicated. Figure 2

products of the form s's, d',d, sd' ,d,
and s'd, satisfy the appropriate com-
mutation relations (see the box on page
28) to form the basis of a six-dimension-
al algebra called U(6). For this system
then, the highest symmetry is U(6) and
the lowest symmetry must be O(3)
(rotational invariance). In the lan-
guage of algebraic chains analogous to
those of the O(3) algebra discussed in
the box on page 28, this means that the
U(6) algebra (symmetry) is broken by
subalgebras (subsymmetries) until the
0(3) algebra (symmetry) is reached.
There are three such chains:

—.8SU(3)20(3) I's
ui6) { —06)20(5)20(3) «"
UBID056)203) €

Each chain results when all but one
of the terms in the Hamiltonian given
above vanishes. The relevant coeffi-
cient in H for each chain is indicated.
As in the angular-momentum case
discussed earlier, each step in a given
chain breaks a degeneracy, introduces
a new quantum number or a set of new
quantum numbers to distinguish for-
mer degenerate levels and introduces a
corresponding term in the eigenvalue
equation. Each step provides new se-
lection rules on transitions and gives
analytical expressions for allowed tran-
sitions. This concept of successive de-
generacy breaking is illustrated in
figure 4 for the O(6) chain and has been
discussed” by Itzhak Bars. An impor-
tant point is that only the levels on the
far right can be observed in a real
nucleus. Thus it is only by detailed
spectroscopy of these levels and transi-
tions among them that one can hope to
glimpse evidence for or against the
validity of the set of quantum numbers,
selection rules and so on, that charac-
terize a given chain and provide evi-
dence for the parent symmetry on the
far left. Each chain represents a type
of nucleus of a specific structure and

PHYSICS TODAY / NOVEMBER 1984

3P|a.\
2. }»u:ama;
3P0

—————————— — a2
thyse
22

—1J(6/4)

has a specific geometrical interpreta-
tion. It is beyond the scope of this
article to show this, but it is impor-
tant—and helpful for understanding
the interacting-boson model—to give
the result. The SU(3) symmetry corre-
sponds to a non-spherical (or "de-
formed”') nucleus shaped like a football
that can both vibrate and rotate. The
U(5) symmetry depicts a spherical nu-
cleus and its vibrational excited modes.
The O(6) symmetry also describes a
deformed nucleus, but one that is not
axially symmetric—it can be crudely
visualized as a "squashed” football
although the amount of squashing is
not constant in ftime.

A convenient way to illustrate the
three symmetries is with the triangle
shown in the lower right of figure 1.
Each vertex represents one of the
symmetry-breaking chains and, there-
fore, a particular nuclear shape. The
legs of the triangle represent particular
cases of transition regions in which,
over a series of nuclei neighboring in
mass (for example, the even-even
osium and platinum nuclei), the struc-
ture undergoes a transition from one
symmetry to another. Such transition
regions, though extremely difficult to
explain in traditional models, are the
epitome of simplicity in the interact-
ing-boson model. The character of any
nucleus in such a region can be speci-
fied by a single parameter reflecting its
relative position along the leg. Of
course many nuclei are more complex
still, corresponding to internal posi-
tions in the triangle, and these require
more parameters for their calculation.
The energy levels of these nuclei exhib-
it, to some degree, the features charac-
teristic of two or three different sym-
metries. Nevertheless it is remarkable
that most of the best-studied transition
regions correspond closely to one of the
three legs, Various nuclei exhibiting'"
either a pure symmetry or a simple
mixture of symmetries are labeled next
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to the triangle. The triangle incorpo-
rates a color code for the symmetries
and for intermediate situations. This
code is then used to classify all the
even—even nuclei in the rare earth-Os—
Pt region as shown in the main part of
figure 1.

The prediction®* of the three subalge-
bras, denoted U(5), SU(3) and O(6),
proved to be a major event in the early
emergence of the interacting-boson
model since nuclei resembling the
geometrical counterparts of the first
two of these symmetries were already
well known while the O(6) limit was
not. Its empirical discovery (see the
first article of reference 10} in Pt'""
played a major role in establishing the
model as an important new approach.
Indeed, the example of Pt'®® nicely
illustrates one aspect of the importance
and power of symmetry ideas. The
level scheme of Pt'*® appears at first
glance as an incredibly complicated
jumble of levels and y-ray transitions.
It is only upon comparison with the
level patterns of the symmetry that the
striking simplicity inherent in the em-
pirical level scheme suddenly becomes
manifest.

Clearly the inherent assumptions of
the interacting-boson model render it
applicable only to the collective states
of even-even nuclei, which below a
certain excitation energy are described
as a finite interacting system of bosons.
Above this excitation energy there is
sufficient energy to excite individual
nucleons to different orbits, thereby
breaking the system of paired-off nu-
cleons that constitute the s and d
bosons. Such states are outside the
scope of the interacting-boson model.
Also outside the scope of the model are
the low-lying states of an odd-even
nucleus, which, of course, must have
one unpaired nucleon (fermion). How-
ever, such nuclei can be treated within
the framework of an extended version
of the model, called the interacting
boson-fermion model which was pro-
posed'' five years ago by lachello and
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Olaf Scholten. Here the Hamiltonian
has the plausible tripartite form

HIEPM ZHEHM +HSP +HINT

where H,,,, is the nuclear Hamiltonian
that describes the collective degrees of
freedom and which, in this model, is
that used for the neighboring even-
even nucleus; H,. is a single-particle
term reflecting degrees of freedom of
the odd fermion; and the most impor-
tant term, H .. is an interaction term
specifying the coupling of the unpaired
particle and the collective degrees of
freedom. The form of the Hamiltonian
(although not the structure of the
individual terms) is the same as that
describing the coupling of electrons and
phonons in a metal. Some of the
original calculations of the interacting
boson—fermion model for odd—even nu-
clei were carried out by the brute-force
method of diagonalization of this Ha-
miltonian. However, there are inher-
ent difficulties with such calculations.
The most significant of these is that,
without model-dependent guidance
from microscopic shell-model calcula-
tions to simplify the problem, the
number of parameters in such a Hamil-
tonian for the boson-fermion model is
approximately the cube of the number
of single-particle levels. This makes a
meaningful physical interpretation
very difficult indeed.

Supersymmetry concepts for nuclei

An alternative approach is to explore
the dynamical symmetries in the prob-
lem in the same way as in the interact-
ing-boson model. As with the boson-
model, these symmetries for the odd-
even nucleus are in effect a model for
the crucial parameters of the Hamil-
tonian. Of course the situation here is
more complicated than in the interact-
ing-boson model because of the addi-
tional fermionic degrees of freedom in
the system, and its exploitation has
only recently been achieved by the
introduction of supersymmetry ideas
as described below. As we discuss in

Interrelationships between nuclear
models of collective states. The shell
model approach is shown on the right and
leads to the interpretation of collective
states in terms of the detailed
(microscopic) nature of the valence
nucleons. The supersymmetry approach to
both even-even and odd-even nuclei is on
the left. The box at the bottom suggests a
hoped-for link in which microscopic shell
model calculations would predict the
parameters used in phenomenological
supersymmetry fits to real nuclei. Figure 3

the box on page 33, the fermion degree
of freedom can be expressed in an
analogous fashion to the boson degree
of freedom in terms of an algebraic
structure as a fermionic algebra UF (m)
where m is the total degeneracy of the
single particle levels. Thus the highest
symmetry of such a boson-fermion
system is the product algebra
UB(6) < U"(m). Unlike the interacting-
boson model, which has only three
sequences of subalgebras, or chains, the
number of possible chains for the bo-
son-fermion model are in general more
numerous. A further complication (see
figure 2) is that the level scheme that
corresponds to a single particle changes
from one region of the periodic table to
another. The value of m changes ac-
cordingly; thus, for the odd nucleus,
there is no "universal” highest symme-
try such as U(6) in the boson model.
For example, the appropriate single-
particle levels for the odd-parity states
for the platinum isotopes are ps.s, Py/as
and f;,,. This means that the highest
symmetry is UP(6) x UF (12). There are
many ways to break such symmetries
to reach the so-called Spin (3) algebra
(see the box on page 33), the analogous
algebra in the odd—even nucleus to O(3)
for rotational invariance for even—even
nuclei. An example (not unique) start-
ing with, say UP(6) = UF(12), is a chain
of the form

UR6) = UF(12) D UBB) x UF(6)x UT(2)
D O%(6)« OF(6) « SUF(2)
2 0P ' F(B) « SUF(2)
2 0P F(5) % SUY2)
2 0" " F(3) » SU¥(2) D Spin(3).

Each step corresponds to a further
breakup of the degeneracy of the levels
and introduces a new quantum number
to classify them. This is exactly analo-
gous to the "chain decompositions” of
the familiar angular-momentum alge-
bra (see the figure in the box on page
28) and the U(6) algebra of the interact-
ing-boson model that are shown in
figure 4. A great deal of mathematical
technology now exists to carry out such



Calculated energy levels of an atomic
nucleus, for example Pt, supplied by the
U(6) algebra of the interacting-boson
model. The successive degeneracy
breakings and quantum numbers are
indicated and the eigenvalue expression
given at the bottom. A, B, and C are
adjustable parameters. Figure 4

chain decompositions.

Clearly the bosonic description for
the nucleus in either the boson or the
boson-fermion model can only be an
approximate one, because real nuclei
consist solely of fermions (protons and
neutrons). Therefore the U®(6) sym-
metry for even—even nuclei or the
U®(6) < UF (m) symmetry for odd-even
nuclei cannot be the highest symmetry
for the system. In a sense, these are
only "effective” symmetries. This is
quite different from the previous stud-
ies of dynamical symmetries in nuclear
physics where one usually begins with
the highest symmetry within the model
space. For example, the seminal
work'* of J. Phillip Elliott on the SU(3)
model begins with the UF(12) symme-
try, which is the highest symmetry for
an s, dg.m, ds.» model space.

Once the symmetry—whether boson
or boson—fermion—is recognized only
as effective, an intriguing possibility
can be raised, namely whether its
symmetry, UB(6) or UB(6)x U"(m) re-
spectively, could conceivably serve the
role of a symmetry-breaking mecha-
nism of a still higher symmetry, just as
O(6) breaks the U(6) symmetry in the
even nucleus or O(2) breaks the O(3)
angular-momentum symmetry. la-
chello” postulated in 1980 that the
concept of supersymmetry is such a
(higher) symmetry:
—interacting-boson

model symmetry
—sinteracting

boson-fermion
model symmetry

supersymmetry

For example, the above chain modified
to incorporate dynamical supersym-
metry as the highest symmetry must
now be altered to begin with the
supersymmetry algebra U(6/12):

UB/12)D UB6)x UF(12)D ...

D Spin(3).
Such a generalized approach to collec-
tive states is included in figure 3.
Having postulated dynamical super-

/ ag=N—4
/
/
/
/
/
/
J” L —
_;" g=N-2
\
\
\
\
\
LY
\ A
\ 25
\ og=N /’_,
e
S~
~ s
“~
~
=

ag=N—4
family of levels

a=N-2
family of levels

= 6°

r=3 - +

_____ 3

E"--:_::—2;

r=2 e WL 4

e ————— = =TT 2
= 1

e L e e s 2+
=0

e —————— e — — 04

U({B)>0(8) 20(5)20(3)
E=E;+Aolec+4) +Br(r+3) + CI{J + 1)

symmetry as the unifying symmetry
for the even-even and odd-even sys-
tems, it would be interesting to know
whether such a symmetry can be de-
tected experimentally. There are two
levels to this question. The first is:
Given a complete chain with a super-
algebra U(n/m) as its highest symme-
try, can one find a set (or sets) of data
that are well-predicted by the theory?
The second, deeper level is, how might
one demonstrate the existence of such a
symmetry? The second question is far
more difficult to address. Ideally, one
would like to have experimental results
that explicitly point to—and require—
the highest symmetry of the chain. If
this could not be achieved, and if, at
least, one could establish evidence for
the existence of each of the subalgebra
chains, this would point "upstream™ to
the superalgebra as their “source.” To
do this, needless to say, is an arduous
task, both theoretically and experimen-
tally, and therefore most tests of super-
symmetry to date have attempted to
answer the first question by comparing
a given chain with a specific set of data.
In line with this, we hope that with the
accumulation of more empirical evi-
dence it will be possible to answer the
second question as well.

We shall now discuss the structure of
the two most studied of these chains in
some detail and summarize the experi-
mental situation. As with symmetries
in the interacting-boson model, each
such chain decomposition of a superal-
gebra corresponds to a specific choice of
the coefficients in the boson-fermion
model Hamiltonian. There is no a
priori reason to expect that any given
nucleus will be described by that
choice. However one can hope that, in
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nuclear regions where the even-even
nuclei display one of the symmetries of
the interacting-boson models, condi-
tions may be ripe for an even-even and
odd-even pair of nuclei to be character-
ized by an appropriate supersymmetry
chain.

Experimental tests

Figure 2 shows a number of single-
particle energy levels for an unpaired
nucleon. This translates into a rich
variety of possible supersymmetry
schemes because the available single-
particle levels determine the size of the
fermion sector (that is, m) in the super-
algebra U(6/m). Two cases have been
rather thoroughly studied (but many
others can be, and are being, looked
into): supersymmetries based on the
groups U(6/4) and U(6/12). (See refer-
ences 3 and 13 for the original theoreti-
cal papers, references 14-16 for further
embellishments and references 17 and
18 for experimental tests of supersym-
metry in nuclei. References 1 and 19
provide recent summaries of the status
of the field.) The first supersymmetry
studied, U(6/4), corresponds to a fer-
mion in a single orbit with j = %. The
other, U(6/12), corresponds to a fer-
mion that can be in any of the three
orbits corresponding to ; having the
value %, % or %;. The interest in these
two cases stems directly from the fact
that the even-even Pt isotopes near
A =196 (Z="T78 N=118) are a very
good manifestation of a dynamical
symmetry in the boson model, namely
the chain including the O(6) symmetry,
as is indicated by red color describing
these nuclei in figure 1. Figure 2 shows
that the positive-parity proton orbits in
this region are the s,,, and d,,, orbits
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while the negative-parity neutron or-
bits are the p,,,, psy» and f;,, orbits.
Thus a U(6/12) supersymmetry should
describe this latter case—that is, odd-
even and even-even platinum iso-
topes—while U(6/4) may be tested as a
partial description (accounting for the
dy,, orbit and neglecting the s,,, orbit)
of the odd-even iridium (Z = 77) nuclei
and the even-even osmium (Z = 76)
nuclei. The U(6/4) scheme, as the first
supersymmetry to be proposed for nu-
clei, will be discussed first. The first
priority in testing it is to isolate and
identify those levels in the odd-even
nucleus that have an unpaired proton
in the d,, orbit. Once this subset of
levels is distinguished from that in
which the s,,, orbit is accupied, one can
use a varlety of experimental tech-
niques to study the structure of the
appropriate levels,

Thus, for a starting point, one needs
an experimental probe that is orhit-
sensitive. A good example is the
(He', H')—or (a, t—reaction, in which
an incident « particle approaches a
target nucleus. Once within the range
of the nuclear potential, a proton can
be extracted from the « particle, which
becomes a triton. The proton is trans-
ferred to the target nucleus (of mass A)
and circumnavigates the residual
(A + 1) nucleus in any one of the
available low-lying shell-model orbits.
Only those states in the final nucleus
will be formed that look like the target
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nucleus plus one odd nucleon in a
specific orbit.

In actual tests of the U(6/4) scheme,
the inverse reaction, (t,a), has been
used on a target of Pt'** to study levels
in Ir'™ by Jolie Cizewski and cowork-
ers'” at the tandem accelerator of Los
Alamos National Laboratory. A com-
parison®™'*'" of empirical and super-
symmetry-predicted levels in the even—
even and odd-even pair of nuclei,
0s'"_Ir'" is shown in figure 5 where
the levels are labelled by the three
quantum numbers ./, for the angular
momentum of each state, o, which is a
major quantum number distinguishing
families (representations) of levels and
7, a gquantum number distinguishing
levels within a family. (See the discus-
sion in the box on page 33.) The
agreement is impressive indeed. The
angular momenta predicted and ob-
served are the same, and the level
patterns are nearly identical—in parti-
cular the divisions according to the r
and ¢ quantum numbers. Moreover,
the relative cross sections in the (t, @)
reaction making Ir'* obey the selection
rules and ratios expected in this super-
symmetry. There are discrepancies in
details, but the overall agreement is
encouraging. Other studies'’ have in-
vestigated j-ray transitions in this
region and these also show reasonable
accord with the U(6/4) scheme, Tests'”
of the U(6/4) scheme for the Au''"-
Pt'" pair of nuclei by Jacques Vervier

Measured levels of the supersymmetry
pair 0s'9? and Ir'®* compared with those
predicted by the U(6/4) symmetry. The o
and r quantum numbers are given, as are
the level angular momenta. (See

references 3, 13 and 17.) Figure 5

and his coworkers at the cyclotron of
Louvain-la-Neuve, Belgium, also show
good agreement for y-ray transitions
and reasonable agreement for the nu-
clear reaction Pt'**(He?, H*)Au'"", On
the other hand, other studies'” by a
group led by Michel Vergnes at the
synchrotron at Orsay, France, reveal
sizeable descrepancies with the U(6/4)
scheme in particle-transfer reactions of
the type (He', H?) leading to Pt'** and
(H* He®) leading to Pt'"®, Neverthe-
less, all the existing data taken togeth-
er have provided the first empirical
evidence for supersymmetry in nuclei
while, at the same time, they have
disclosed a degree of U(6/4)-0(6) chain
breaking, especially with increasing
mass. Cizewski has emphasized that
this breaking is at least partially relat-
ed to the restriction to an incomplete
fermion space, pointing to the need for
a multi-j scheme.

Recently, such a scheme based on the
U(6/12) group has, in fact, been worked
out.'” As noted above, this supersym-
metry corresponds to a fermion that
can occupy orbits where j equals %2, ¥z
or % and should apply to the Pt
isotopes. It is crucial to note that in
this case the supersymmetry should
predict all low-lying, low-spin, nega-
tive-parity levels, so one needs an
experimental probe that is not selec-
tive. The radiative neutron capture, or
(n, y), reaction is ideal. As contrasted
with the direct reactions discussed



Dynamical supersymmetry is the dynami-
cal symmetry proposed for a mixed fer-
mion and boson system. It provides a
framework that allows one to treat systems
(nuclei, polymers, elementary particles or
whatever) in which there are both bosons
and fermions in such a way that both
bosonic and fermionic aspects are on an
equal footing and yet their individuality also
emerges. This is a radical departure from
all symmetries used hitherto in physics,
because it must unite the concepts of
fermions (which carry intrinsic half-integer
spins, satisfy Fermi-Dirac statistics and
obey the Pauli exclusion principle) and
bosons (which carry integer spins, satisfy
Bose-Einstein statistics and obey no ex-
clusion principle). In the nuclear case,
supersymmetry thus provides a way to
unify the understanding of even—even and
odd-even nuclei, and, moreover, does so
in a way that highlights the intuitively ap-
pealing (common) symmetry aspects (geo-
metrical shape concept) of the nuclei in-
volved. Supersymmetry in nuclei is
analogous to, and is an extension of, the
normal dynamical symmetry of the boson
model for even-even nuclei and indeed,
when applied to such nuclei, yields the
familiar interacting-boson results.  We
have learned from the interacting-boson
model that, if paired fermions in a system
behave as bosons, the system also pos-
sesses the dynamical symmetry U(6).
Likewise, one has known from Gino Ra-
cah's early work in atomic spectroscopy
that a system of fermions moving in a field
possesses the dynamical symmetry U(m)
where m is the total (degenerate) number
of single particle orbits of the system; that
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is, m equals X, (2/, + 1) where the j, are
the angular momenta of the shell model
orbits available to the fermion. Thus a
combined system of bosons and fermions
will be described by U® (6) » U (m). Thisis
not yet a supersymmetry since the boson
and fermion ‘'sectors" are still distinguish-
able. However, if the boson and fermion
systems are mixed, such that bosons may
turn into fermions and vice versa, then we
have a dynamical supersymmetry system,
U(6/m). The mathematics of such super-
algebras originated only about a decade
ago (whereas the Lie algebra of regular
symmetries was developed over a hundred
years ago); it is still very much a topic of
current research in mathematical physics.

As mentioned in the text, two main
examples of supersymmetries have been
proposed for nuclei. They differ in the
allowed orbits that the odd fermion can
occupy. The first test of dynamical super-
symmetry in nuclear physics, proposed by
Baha Balantekin, Bars and lachello,' in-
volved a fermion with / equaling %, cou-
pled to the OF (6) even-even core nucleus
described well by the interaction-boson
model. Thus the highest symmetry is the
“single- "' supersymmetry U(6/4), and the
chain is

U(6/4) > UB(8) = U (4)
> 0F (6) = SUF (4)2 OF * F (B)
208 +F(5) D 0% (3)

In line with the concept of dynamical sym-
metry outlined in the box on page 28, each
step here involves a greater degree of
degeneracy breaking and introduces a
new quantum number: for example, o for
the OF * F(6) step and r for the OF *  (5)

link.

The second supersymmetry to be stud-
ied'?is a "multi/,"" in which the superalge-
bra is U(6/12), and where therefore corre-
sponds to the unpaired nucleon in the py 2,
Pss2 15,2 Orbitals. In this case, the chain
decomposition is nontrivial. It involves the
concept of the "pseudo-orbital” method
whose technical aspects are beyond the
scope of this article. The entire chain
decomposition is also more complex than
the above because there are many
"paths." It can be best illustrated by a
“tree" diagram as given in the adjoining
figure. The figure includes chains involving
all three of the even symmetries of the
interacting-boson approximation: U®(5),
SUP(3) and OF(6). In addition, the tree
shows two types of coupling depending on
whether the boson and fermion parts are
combined at the level of U *F (6) or lower
in the chain at U®*F(5), SUP*F(3) or
0% ' F(6). For the decompositions involv-
ing O (6), which are the ones that have
been most tested to date, the two chains
are drawn in red and green, respectively,
To illustrate the use of the figure, the green
chain in an O° (6) decomposition, reads

U(/12) D UB(B) « UT(12)
2 UB(B) « UT(B) =« UF(2)
- 0F(6) ~ O7(B) ~ SU"(2)
o 0F - F(B) » SUF(2)
D 0%+ F(5) x SUF(2)
D 0B rF(3) » SUF(2) O Spin(3)

Again, each step involves a further break-
ing of the degeneracy and a new quantum
number: for example, (o, o,) for the
0P (6) < O" (6) « SU (2) step and (r,, )
for the OF "7 (5) « SU"(2) step.

above, this is a compound nuclear
reaction is which the incident neutron
is absorbed by the target (mass A)
nucleus; the result is an isotope of mass
A 4 1 in a highly excited state with an
energy approximately equal to the

neutron binding energy. This state is
extraordinarily complex, its wave func-
tion containing amplitudes for many
different multiparticle configurations.
Owing to this complexity, the intensity
of the y-rays emitted when the state

decays to lower-lying levels follows a
statistical law. By carrying out (n, )
experiments with non-monoenergetic
neutrons, one can average out the
statistical fluctuations: then, all states
of a given spin will be populated
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equally (except lor a known energy
dependence). A corollary of this is the
assurance that the complete set of such
states up to some excitation energy will
be disclosed. The concept of spectro-
scopic "completeness™" is a new one in
nuclear physics and its exploitation in
the (n, y) reaction has played an impor-
tant role in revitalizing interest in this
long-familiar tool, just as the interact-
ing-boson model has led to a renais-
sance of interest in nuclear structure
itself, This (n, y) averaging technique,
known as average resonance capture, is
carried out at Brookhaven National
Laboratory at the High Flux Beam
Reactor which provides a high-intensi-
ty Alux of neutrons ranging in energy
from thermal (much less than 1 eV) to
many keV. If a beam of these neutrons
is passed through special filter materi-
als of natural Sc or Fe”, a neutron
beam is produced with mean energy of
2 or 24 keV respectively, which is ideal
for average resonance capture spectros-
copy. In addition, it is important to
carry out detailed studies of individual
y rays connecting low-lying levels.
These can best be studied using the
high-precision bent-crystal spectro-
meters at the Institut Laue-Langevin
in Grenoble, France. These detectors
use the principle of Bragg diffraction in
which the deexcitation y rays to be
studied are scattered at angles that are
a sensitive function of their energy.
The combination of these techniques
has been used'® by David D. Warner
and coworkers to test the U(6/12)
scheme in Pt'*®, and average resonance
capture spectroscopy alone has been
carried out for Pt'"" and Pt'*. The
Pt'%® nucleus is the best studied. There
are two particular decompositions of
the U(6/12) superalgebra that incorpo-
rate O(6) symmetries and might be
considered for comparison with the
data. These schemes are cited in the
box on page 33 and denoted in the
adjoining figure in green and red. It
turns out that the red chain'® repro-
duces the empirical results, especially
the energy levels, better. It differs
from the green chain primarily in the
amount of interaction between the
unpaired nucleon and the underlying
even—-even core nucleus that this nu-
cleon orbits. This "coupling” is greater
in the red chain and appears to be a
better depiction of the data. It is
compared with the data for Pt'"" in
figure 6: It is clear that, overall, there
is excellent agreement with experi-
ment. Most importantly, there is a one-
to-one correspondence of observed and
predicted levels with the proper spins,
and the energy agreement is good.
This achievement is not easily claimed
by other nuclear models for this region.
The only significant discrepancy is that
the theoretically predicted energy lev-
els of the second representation
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([N, N.]=[N. 1]) are too compressed.
Recently, Hong-Zhou Sun, Michel Val-
lieres and their coworkers proposed'
an extension of the U(6/12) scheme,
incorporating higher-order terms (Casi-
mir operators) in the Hamiltonian in
an effort to eradicate this discrepancy;
although this idea is interesting, futher
testing in other mass regions is needed
for a better assessment of its useful-
ness, It is significant that the same
parameters that produce the results in
figure 6 also give reasonable agreement
for the low-lying levels of the even-
even nucleus, Pt'"®. This fact is impor-
tant, for it points rather clearly to the
existence of the parent super-algebra
U(6/12), as opposed to "decoupled”
U®(6) and U"(12) algebras, as the
highest symmetry and, as such, ad-
dresses the supersymmetry issue at the
second level noted above. These results
inspired subsequent studies of the U(6/
12) supersymmetry. The resonance-
capture research'® on Pt'"" and Pt'"
suggested the continuity of a supersym-
metry interpretation although other
work'” by Vergnes' group, using selec-
tive transfer reactions such as H% p)
and (p, H?), indicates a gradual break-
down of the U(6/12) scheme with in-
creasing mass. To establish more de-
finitively the applicability and evolu-
tion with mass of the U(6/12)
supersymmetry in this region, it will be
important to study y-ray transitions in
these nuclei and to compare their
absolute and relative strengths with
the supersymmetry. Work along these
lines is also in progress.

To summarize, there is now growing
empirical evidence that the concept of a
U(6/12) supersymmetry in a chain
involving the O(6) symmetry has utility
for odd nuclei near Pt'*® and presuma-
bly reflects at least the approximate
validity of the underlying symmetry
concepts.

Very recently, the U(6/12) scheme—
this time in a chain incorporating the
SU(3) symmetry of the boson approxi-
mation—has been tested'” for W' hy
Warner and coworkers at Brookhaven.
Again the problem of compression of
levels occurs; in this case most clearly
in comparing fits for the even-even and
odd-even nuclei in the higher represen-
tations. Nevertheless, the predictions
for the odd-even nucleus W'** repro-
duce the empirical data very well: In
particular they seem to account for
some levels around 600 keV of excita-
tion energy that were puzzling in pre-
vious models of these nuclei, The
SU(3)-based supersymmetry chain nat-
urally predicts their presence and,
indeed, may account for their detailed
structure. These results, when com-
bined with the Pt results discussed
above, go a long way towards support-
ing an affirmative answer for our first
question: Given a superalgebra—in

this case based on U(6/12)—are there
data that satisfy its predictions?

It should also be mentioned that the
singlej supersymmetry U(6/4) dis-
cussed earlier has very recently been
expanded' by Yin-Sheng Ling and
collaborators in another multi-f super-
symmetry scheme, U(6/20). In this
scheme, the fermion can c}ccu?y not
only the orbit with j equaling %, but
orbits in which j equals Y3, %2, and 7 as
well, It is interesting to note that some
of the difficulties associated with the
UU(6/4) scheme are now removed by this
extension.

The importance and appeal of super-
symmetry ideas to nuclei is at least
fourfold. First, they provide a much
needed unification of our understand-
ing of even-even and odd-even nuclei
(and, potentially, of odd—odd species as
well). Second, they offer insight inta
the inherent, underlying symmetry
structure of atomic nuclei and are also
a powerful tool for discerning the
beauties of simplicity amidst the appar-
ent complexity of detailed nuclear-level
schemes. It is worth amplifying this in
a historical context. When confronted
by a seemingly complicated physical
system, the physicist's quest is to seek a
unifying—and thus, one hopes, simpli-
fying—understanding. For example,
once Mendeleyev recognized the pat-
tern of the atomic elements in the form
of a periodic table, it was inevitable
that an understanding of the underly-
ing structure of atoms would be forth-
coming (even though it came about a
half century later). Similarly, one may
understand the dynamical symmetry
in collective nuclear structure, dis-
cussed in this paper, in this light as
well. The properties of the even—even
nucleus (such as energy spectra or
transition rates) at first glance are very
complicated indeed. Yet the much-
heralded geometrical picture provided
a needed appreciation of the collective
manifestations in this complicated sys-
tem. This appreciation has led to the
understanding, some twenty years lat-
er, of the underlying structure by
means of dynamical symmetry. Today
the properties of the even—odd nucleus
by themselves also appear very com-
plex. An interpretation of both the
even-even and even-odd nuclei in a
simple framework appears even more
remote, although a unified understand-
ing of these two physical systems has
long been the goal of nuclear-structure
physics. It is indeed remarkable that
dynamical symmetry for the even—even
nucleus provides a clue pointing us in a
direction that may lead to this unified
understanding, via dynamical super-
symmetry. The third attractive aspect
of supersymmetry schemes is that they
provide simple analytic expressions for
eigenvalues and transition rates that
avoid the need for complex multi-



parameter diagonalization of the full
Hamiltonian of both the boson and the
boson—fermion models. Fourth, al-
though ideas on supersymmetry are
now widespread in physics and under
intense study in many subfields, only in
nuclear physics is there any substan-
tial body of experimental evidence
reflecting on their validity. Although
the specific supersymmetry schemes
appropriate to nuclei differ from their
counterparts in, for example, high-
energy or condensed-matter physics,
the emerging consensus on their use-
fulness here confers on the broader
field a new level of general interest and
a strong motivation for increased activ-
ity. Clearly, however, it is still too
early to make sweeping conclusions
concerning the wvalidity of nuclear
supersymmetries in general. At the
moment, the evidence for the level
patterns they predict is encouraging,
but discrepancies nevertheless remain.
It will only be with the accumulation of
considerably more data that a full
picture of their utility can be painted.
Even if it turns out that no nuclei truly
follow the supersymmetry predictions,
the concept can still be of immense
value in providing a new touchstone.
Just as in even—even nuclei, where the
symmetry of the interacting-boson
model led immediately to a new under-
standing of such regions as the Pt-Os
and Sm—Gd nuclei in terms of systema-
tic deviations from one or another of
the symmetries of the boson models,
the structure and properties of super-
symmetries may provide a foundation
for simplifying the interpretation of
extensive sequences of even-even and
odd-even nuclei.
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