LOW COST

Thermoelectric PMT Chamber

(Includes power supply)
Fully-Wired Tube Socket Assembly
(for all standard PMTs), Double-Pane,
Non-Fogging Window and
Front-Mounting Adapter, Model
TE-182TSRF Air-Heat exchanged
chambers provide reliable,
high-quality cooling with excellent
portability and flexibility. Design of
this economical system is based on the
widely used Products for Research
Model TE-104. Model TE-182TSRF
accepts 2" diameter or smaller end-on
PMTs. Model TE-212TSRF accepts side
window tubes

Products for Research, Inc.

88 Holten Street, Danvers, MA 01923
CABLE: PHOTOCOOL TELEX 94-0287

Circle number 93 on Reader Service Card

"An exciting book which brings out the most important findings in modern cosmology for the general reader."

—SAMUEL C.C. TING, Nobel Laureate, Physics, MIT

The Creation of Matter

The Universe from Beginning to End

HARALD FRITZSCH

In this exciting new book, one of the world's leading physicists for the first time provides the general reader with a comprehensive, authoritative, and immensely readable account of modern cosmology's view of the universe. Writing with an infectious enthusiasm that charms as it informs, Dr. Fritzsch describes the eight steps of cosmic evolution from the Big Bang to the present, and he ends with an informed scenario of the distant future, with the universe ending in a sea of photons, neutrinos, and (perhaps) other particles.

Basic Books, Inc. 10 East 53rd St., New York, NY 10022

letters

posed by John Eddy. As a matter of fact, I am a bit allergic to such alignments. Too many authors have seen alignments in sets of objects as different as quasars, megalithic stones in Cornwall, or Roman roads—alignments that have been assigned some profound (and often unspecified) meaning, but whose significance does not withstand a proper statistical analysis. The alignments with bright stars observed in the Medicine Wheel are in the same category, as will be shown in the following simple calculation.

The problem under investigation is as follows. Given a set of objects and a second set of randomly distributed objects, what is the a priori probability of finding a member of the second set aligned-within some acceptance angle-on two of the first set? Actually, the two sets may coincide with one another, as is the case for the megalithic stones. Broadbent has applied2 some simple techniques to judge the significance of proposed alignments among those stones (he found that they are due to random coincidence); these techniques could also be applied to the proposed alignment with astronomical objects. In the present case, the second set consists of the rising positions of bright stars. How many such alignments are expected? This is very easy to calculate. The alignments about any 2 out of N stones point to N!/2!(N-2)!positions on the eastern horizon. A bright star is considered to be aligned if its rising point falls within an angle ϵ from such position. Let us take ϵ equal to one degree, which, judging from figure 6 in Aveni's article, is a very conservative estimate. For instance, the direction towards Rigel passes more than 2 degrees from the center of the eastern structure. If N is small, the total area on the horizon, as defined by the stone positions and the acceptance angle, is $2\epsilon \cdot M/2!(N-2)!$ and, therefore, the probability for any random point of the horizon to be aligned with 2 of the stones is

$$P = \binom{N}{2} \times 2\epsilon / 180.$$

For N=6 positions on the circle, one finds $P=\epsilon/6$; for $N=7, P=0.23\epsilon$. The N=7 case is probably an overestimate, because the boulder in the center causes some intervals on the horizon to overlap. In general, such overlapping becomes important for P larger than about 0.5, but here we can neglect this complication for the N=6 case. Thus $P \sim \frac{1}{6}$ to $\frac{1}{3}$. There are 10 stars brighter than $1^{\rm m}$ (Aldebran: $m_{\rm v}=0.85$) visible from Wyoming. Hence we expect that purely by chance $P \times 10=2$ or 3 such bright stars will be aligned, which is as observed by Eddy. Note that for a

uniform sky distribution, the density of rising points is not uniform but peaks in the east. Therefore the probability for alignments in the east is somewhat increased, but, in order to compute the expected number, we can use the average density. Of course the above does not mean that these bright stars were not considered when the Medicine Wheel was built, only that the number of alignments is indistinguishable from the expected one if the builders would not have bothered about stars at all. Therefore arguments in favor of the opposite have to come purely from other considerations. The reasoning quoted from Eddy (that the stars mark the time of good weather) is hardly "a tight argument." It is an amusing exercise for a cloudy night to take any random subset of 3 bright stars and then try to find a posteriori a common property of, or a trend defined by them. In this, one will almost always succeed. The statement that Aldebaran, Rigel and Sirius are rising in three consecutive months has therefore the same content of proof as the statement that those stars have marked different colors (red, blue and white, respectively). To be more specific: Rigel can be replaced by Capella (yellow) to form a triad with similar "properties." Yet no alignment with Capella is observed.

Apart from all this, it is not clear to me why the proposed alignments on stars are needed at all. A culture capable of knowing in detail the motions of the Sun and Moon in the sky would also be capable of knowing when the good and bad weather periods are due, without having to rely on the observations of particular stars.

References

7/84

- 1. J. Eddy, Science 184, 1035 (1974).
- S. R. Broadbent, J. R. Stat. Soc. A143, 109 (1980).

E. J. ZUIDERWIJK
European Southern Observatory
LaSilla, Chile

Quality of science teaching

As a physicist and recent chairman of the Board of Education of Howard County, Maryland, I was particularly interested in the article entitled "Leaving teaching: A difficult choice" by James E. Mowbray (Physics Today, September 1983, page 36). Mowbray had been a very successful teacher in the Howard County school system and enjoyed the respect of his peers and his students. Many of the specific recommendations he made deserve careful consideration. Unfortunately, he misrepresented some elements of the problem in a way which may make an

NORTH-HOLLAND ANNOUNCES

NORTH-HOLLAND PHYSICS PUBLISHING, P.O. Box 103, 1000 AC Amsterdam - The Netherlands ELSEVIER SCIENCE PUBLISHING CO., Inc., 52 Vanderbilt Ave., New York, NY 10017

NEW Handbook on the Physics and Chemistry of the Actinides, Volume 1

edited by A.J. FREEMAN and G.H. LANDER

1984 about 530 pages Price: US \$111.00/Dfl.300.00 Subscription Price: US \$94.50/Dfl.255.00 ISBN 0-444-86903-4

In the last 15 years actinide research has presented unique challenges both for experimentalists and theorists. Their uniqueness stems not only from their nuclear properties, which since the early 1940's has led to their important role in nuclear energy and nuclear technology, but also from their unusual chemical and physical properties which have added new excitement and discoveries to both these disciplines.

As is made clear both here and in volumes to follow, these elements have 'unfortunate properties' such as scarcity, radioactivity, toxicity and reactivity, which cause severe complications for their preparation and handling. The unusual behavior of their 5f electrons which causes questions such as localization versus delocalization to come to the forefront has added complexity not found in the other elements. The fruits of these extensive and greatly accelerated experimental and theoretical investigations include not only a deeper understanding of these unique elements but of the rest of the elements in the Periodic Table as well.

It is the purpose of these volumes to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up to date reviews covering both the physics and chemistry of these exotic elements. Written by the foremost research workers in the field the chapters cover all aspects of research and are complete with tabular material. This book will be invaluable to those in or about to enter this field and sufficiently concise to be valuable to those with a minor interest in this area.

CONTENTS: Preface. 1. Atomic properties of the actinides (J.P. Desclaux and A.J. Freeman). 2. Sample preparation and crystal growth for solid state actinide research (J.C. Spirlet and O. Vogt). 3. Electronic structure and bulk ground state properties of the ac-

tinides (M.S.S. Brooks, B. Johansson and H.L. Skriver). 4. Electron spectroscopy studies (Y. Baer). 5. Optical and magneto-optical properties (J. Schoenes). 6. Neutron elastic scattering of the actinides (J. Rossat-Mignod, G.H. Lander and P. Burlet). Author Index. Subject Index.

Handbook on the Physics and Chemistry of Rare Earths, Volume 7

edited by KARL A. GSCHNEIDNER, Jr. and LEROY EYRING

1984 x + 584 pages Price: US \$129.00/Dfl.335.00 Subscription Price: US \$109.50/Dfl.285.00 ISBN 0-444-86851-8

A COMMENT FROM THE PRESS ON VOLUMES PREVIOUSLY PUBLISHED:

"The volumes together present a comprehensive and up-to-date account of the physics and chemistry of these materials and will be welcomed as a reference and guide by all research workers and students in the field."

Philosophical Magazine

The Handbook continues to promote an interactive approach to the science of the rare earths by publishing critical and authoritative reviews of insights won from focused study of some aspects of the field when its publication adds important archival material of general usefulness or when topical publication itself aids new understanding of an active area. Most chapters serve both purposes in varied proportions. The first chapter in this volume summarizes present knowledge of ternary and higher order compounds and alloys formed by the rare earth metals and silicon with another element. Chapter two is concerned with the contributions of the rare earths to the present scientific activity in the preparation, properties and applications of amorphous materials. The last chapter provides an introduction to the place of the rare earths in the present revival of interest in the scientifically significant and technologically important organometallic compounds.

CONTENTS: Chapters: 51. Phase Equilibria in Ternary and High Order Systems with Rare Earth and Silicon (P. Rogl). 52. Amorphous Alloys (K.H.J. Buschow). 53. Organometallic Compounds of the Rare Earths (H. Schumann and W. Genthe). Index.

Volumes previously published:

Volume 1: Metals 1978 1st repr. 1982 xxiv + 894 pages ISBN 0-444-85020-1

Volume 2: Alloys and Intermetallics 1979 1st repr. 1982 xiv + 620 pages ISBN 0-444-85021-X

Volume 3: Non-metallic Compounds I 1979 xiv + 664 pages ISBN 0-444-85215-8

Volume 4: Non-metallic Compounds II 1979 xiv + 602 pages ISBN 0-444-85216-6

Volume 5 1982 x + 702 pages ISBN 0-444-86375-3

Volume 6 1984 x + 574 pages ISBN 0-444-86592-6

Current Topics in Materials Science, Volume 11

edited by E. KALDIS

1984 viii + 460 pages Price: US \$96.25/Dfl.250.00 Subscription Price: US \$81.50/Dfl.212.50 ISBN 0-444-86833-x

Volume 11 in this series contains 4 reviews in which the following areas are discussed:-

 The growth of garnet thin films and crystals from both a theoretical and experimental point of view;

 the optimization of important experimental parameters for Czochralski growth of large single crystals for the growth of garnets;

 the growth, structure, physical properties and applications of iron borate, and

 the growth methods and physical properties of lanthanum hexaboride.

CONTENTS: Preface: 1. High temperature solution growth of garnets: theoretical models and experimental results (P. Görnert and F. Voigt). 2. Substrates for epitaxial garnet layers: crystal growth and quality (D. Mateika). 3. Growth and properties of iron borate, FeBO₃ (R. Diehl, W. Jantz, B.I. Nölang and W. Wettling). 4. Single crystals of lanthanum hexaboride: preparation, properties and applications (M.M. Korsukova and V.N. Gurin). Subject Index. Materials Index. Cumulative title index – Volumes 1–11.

LN₂ Temperatures without LN₂

The MMR Model K-7702 System IIB is a Joule-Thomson, gas expansion temperature characterization system designed for permanent or semi-permanent electrical component cooling and temperature stabilization. It provides selective cooling of small components or samples over a range of +100°C to -196°C (77K) without the need for liquid nitrogen.

Features

- Small, compact size
- · Excellent temperature stability
- Frost-free windows
- Noise-free operation
- · Choice of vacuum chambers

Applications

- Cooling CCD arrays
- Hall Effect measurements
- Raman spectroscopy
- GaAs FET cooling
- IR detector cooling

For more information, contact

MMR Technologies, Inc.

1400 Stierlin Road, #A-5 Mountain View, California 94043, U.S.A. Telephone: (415) 962-9620 Telex: 171618

Circle number 109 on Reader Service Card

letters

informed discussion of this issue diffi-

The "vindictiveness" attributed to the local school board in Mowbray's article consisted of an attempt to discourage any teachers from leaving classes mid-year without strong reason. The teacher contract is, in our opinion, mutually binding for teachers and the school system and exists in part to ensure that students have a full year of competent instruction. By county policy, any teacher who leaves mid-year without reasonable cause violates the contract and is subject to those penalties allowed under Maryland law. In Mowbray's case, those penalties were applied.

If it is difficult to obtain qualified physics teachers given adequate time and the availability of new graduates from colleges and universities, the problem is even more difficult on short notice in the middle of the school year. As a result, the education of students suffers when their teacher leaves under such circumstances. Any discussion of school-board-teacher relationships needs to recognize the reciprocal responsibility both parties have to students.

As a further point in the same article, Mowbray describes his frustrations at the unwillingness of the school board to approve higher pay for science and mathematics teachers. In fact, the major opponents of such differential pay are not local boards of education, but Mowbray's fellow teachers. Our local experience has been that teachers in non-science and math specialties, and their local education associations (the designated collective bargaining agents under Maryland State Law) have resolutely opposed any discussion of differential pay.

In collective bargaining, issues flatly opposed by one negotiating party are not easily won. In addition, it is arguable whether this is the best way to improve the supply of qualified teachers in the sciences.

The issue of physics education, specifically, and of science and math education, generally, is an important one in which The American Physical Society, through its various professional organizations, can play a role in focusing public attention on this urgent problem and on recommending solutions. However, it is essential that the Society provide accurate information to its members if the discussion is to be fruitful. I suggest that, in the future, PHYSICS TODAY provide an opportunity for "peer review" of allegations such as those made in Mowbray's article. Finding "villains" for social problems is sometimes a convenient way to mobilize public opinion, but it is fundamentally demagogic and has no place in a discussion at the professional level expected by members of the Society

This discussion in no way responds to the real issues of quality science teaching, the recruitment and compensation of competent teachers, and the adequacy of curriculum and graduation standards. Howard County, among others, has taken a number of significant steps to attempt to meet these challenges. I would be happy at another time to summarize some of these steps and to give a local board of education perspective on the political, personnel and fiscal aspects of these problems and possible solutions that might be considered.

JOHN C. MURPHY
The Johns Hopkins University
Baltimore, Maryland

Physics on microcomputers

10/83

At the risk of excessively belaboring a point, I would like to offer a few additional observations on the relative performance of micro- and mainframe computers. These differ sufficiently from those reported by Albert DePristo and Stephen Elbert (July, page 15) to cast personal computers in a significantly more favorable light relative to mainframes. A Sanyo MBC 550, using the 8088 at 3.6 MHz plus the 8087 coprocessor, runs their demonstration program in 83 seconds, using Microsoft's fortran 77 version 3.2 compiler (decent, though not ideal) and generating in-line code for the 8087. This is considerably less than the 194 seconds reported by DePristo and Elbert for the 4.77 MHz IBM PC. Incidentally, the same hardware, using Borland Turbo Pascal, which is a single-pass compiler (in contrast to the two-pass optimizing Microsoft compiler), executes the program in 300 seconds, illustrating the importance of good software. It also demonstrates the kind of savings one could obtain, as Per Bak evidently has, by working in assembly language rather than depending on less than optimal software. Finally, a DEC 11/23 with floating-point unit executes the program in about 400 seconds under RT11 FORTRAN. This was the first 16-bit microprocessor produced and it illustrates the kind of progress which has been made since.

It should also be noted that the test program does not include trigonometric functions, at which the 8087 shines. Consider, therefore, the following program:

> real*8 difsqr, pihalf, step, a, b, c pihalf = 1.5d0 read(*, *)niter difsqr = 0.0d0 a = 0.0d0