completed one of his best-known books, The Radio Engineers Handbook, often considered the Bible of its field.

As a result of his wartime responsibilities Terman became part of a relatively small group of individuals who exerted great influence on US science policy in the postwar period.

In 1946 he returned to Stanford as Dean of Engineering and began a program of faculty selection and organizational leadership that brought the Stanford School of Engineering to the forefront among US universities. He became provost of the University in 1955 and from 1959 served also as its vice president until his retirement in 1965. His support was very important in the establishment of a major new scientific institution at Stanford—SLAC—which has made many outstanding contributions to physics.

Marvin Chodorow Stanford University

James Sircom Allen

James Sircom Allen, pioneer nuclear physicist and professor emeritus at the University of Illinois at Urbana-Champaign, died on 15 September 1982. He was 71 years old. He was well known for helping to establish that neutrinos are emitted in beta decay and for providing decisive evidence for the

nature of beta decay.

Born in Halifax, Nova Scotia, he attended the University of Cincinnati, where he earned his BA in 1933. He did his graduate work in physics at the University of Chicago, working with S. K. Allison on the breakup of light nuclei by 300-kV protons. He received his PhD in 1937 and continued exploring nuclear reactions with John Williams at the University of Minnesota as a research associate 1937-1939. It was here that he made his first innovative contributions to special instrumentation for nuclear accelerators and detectors; among these was the study of secondary electrons from metals and the development of the secondary-electron multiplier as detector for positive ions, electrons and photons. From Minnesota he went to Kansas State College as associate professor of physics 1939-1942. Here, with only the most elementary facilities, he designed and carried out the well-known experiment in which he determined the momentum of the neutrino associated with capture of an electron from the K shell of Be7 by use of the energy of the recoiling Li'.

During the war he worked first on the development of radar at the Radiation Laboratory 1942–43 and then at Los Alamos, where he contributed to the developments, interpretation and application of gaseous particle detectors and electron multipliers. After the war he returned to the University of Chicago. His measurements of the energy distribution of nuclear recoils and the correlation with the direction of emitted electrons helped in deciding among possible types of weak interaction involved in beta decay.

Allen continued his work on this weak interaction puzzle after coming to the University of Illinois in 1948. Here, with the assistance of several graduate students, he obtained the clearest evidence that the vector and axial vector interactions were the basic interactions involved in beta decay. To revitalize the old cyclotron in his charge, he and his assistants restructured the magnetic field using the new strong focusing principles; the renovated machine continued to provide the basis for experiments in nuclear physics for another decade.

Allen was much appreciated by his graduate students, who shared with him the joy of doing meaningful experiments well and successfully.

A. O. HANSON R. O. SIMMONS University of Illinois Urbana-Champaign

Jean-Denis Carette

Jean-Denis Carette, professor of physics at Université Laval, died after a brief illness on 29 March 1983. At 52, he was in a period of intense activity in the research groups that he had helped found, notably the Centre de Recherches sur les Atomes et les Molécules and a new laboratory dedicated to the physical chemistry of surfaces.

Born at St-Zacharie de Beauce, he studied engineering physics at Laval, doing graduate work under the direction of Larkin Kerwin. His early interests were in mass spectrometry and electron optics, in particular, electronatom collisions. With time, his interests turned gradually to the use of electron beams for surface studies. His very-high-resolution work with lowenergy electrons led to his most significant contribution, the discovery that surface resonances can show up as fine structure in the current variations of slow electrons diffracted by a singlecrystal metallic surface. These studies generated much interest and stimulated further theoretical as well as experimental work at various laboratories in several countries. His work on secondary emission from semiconducting surfaces led to four patented applications. He served on several national committees of the National Research Council of Canada and was chairman of both the Surface Science and the Atomic and Molecular Physics Divisions of the Canadian Association of Physicists.

DENIS ROY
EMILE J. KNYSTAUTAS
Université Laval

TR RESEARCH

Model T-400 Cryo Monitor

- 1.5 to 380 Kelvin Temperature Range
- . Accuracy 0.1K Below 25K, 1K Above
- Adjustable Dual Alarm Setpoints
- Parallel BCD Interface
- Self Test Feature
- Uses Up To Two Standard Curve Diode Sensors

Indispensable

There's no substitute for knowledge when cycling a cryogenic apparatus or when maintaining a vital process within a specific range of temperature. The all-new T-400 Cryo Monitor comes through with long-term accuracy from 1.5 to 380 Kelvin. Two adjustable alarm setpoints and built-in self-test capacity let you walk away in confidence. Your computer can get into the act, too, with optional parallel BCD interfaces.

Affordable

The unique complement of standard features makes the Cryo Monitor an outstanding value. We believe you will find the T-400 to be the most affordable cryogenic temperature measurement system available anywhere.

Designed and Manufactured by: TRI RESEARCH, INC.

2457 University Avenue St. Paul, MN 55114 USA (612) 645-7193

Telex: 955329, TLX SRVC; Attn: CRYO
TRI Research also manufactures the
electronics sold by Cryo Cal, Inc.