arge-N quantum mechanics
and classical limits

Increasing the number of degrees of freedom
surprisingly simplifies the analysis in many quantum theories,

often making it possible to calculate physical observables.

Laurence G. Yaffe

For a physical theory to be useful, we
should be able to extract from it quanti-
tative predictions for physical observa-
bles. With most theories, this process
of practical application requires some
approximation method that is both
tractable and adequately accurate.
The lack of a useful approximation
scheme can seriously impede progress
in a field of research. Molecular quan-
tum mechanics and critical phenom-
ena, for example, have both suffered
from this problem during periods of
their development., The physics of
strong interactions is in such a period
today. Naturally, our inability to ex-
tract useful predictions from a promis-
ing theory is a strong incentive to deve-
lop novel approximation techniques.

This article is devoted to a particular
approximation scheme, commonly re-
ferred to as the method of “large-N
expansions.” The method is based on
the possibly surprising fact that in-
creasing the number of degrees of
freedom can simplify the analysis of a
theory. Specifically, if N is some mea-
sure of the number of degrees of
freedom, or dimensionality, of a theory,
then the theory may have a natural
large-N generalization that we can
solve explicitly in the limit N—ox.
Such a solution allows one to calculate
physical observables in the original
finite-N theory by expanding them
systematically in powers of 1/N. This
approach turns out to be applicable to a
wide class of theories, including many
for which conventional approximation
techniques are inapplicable.

Large-N expansions were originally
developed for specific theories in the
areas of nuclear physics,' critical phe-
nomena® and particle physics.” They
subsequently found wide use in the
analysis of a variety of theories in these
fields* and in areas such as atomic
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physics® and quantum optics.®
Recent work has shown that all
known examples of quantum theories
in which large-N limits exist share a
common underlying structure. In ev-
ery case, one may regard the large-N
limit as a new type of classical limit,
that is, a limit in which the quantum
dynamics become equivalent to classi-
cal dynamies. This means that one can
find” a classical phase space and a
classical Hamiltonian acting on this
phase space, such that the resulting
classical dynamics is equivalent to the
dynamics of the original quantum the-
ory in the limit N —. As a result,
solving the quantum theory in the limit
of infinite dimensionality is reduced to
the problem of minimizing the equiva-
lent classical Hamiltonian. I should
emphasize that this large-N classical
Hamiltonian is completely different
from the conventional classical Hamil-
tonian that describes the i — 0 limit of
a quantum theory. We will see specific
examples that illustrate the difference.
In the discussion that follows, we will
look at large-N expansions in greater
detail. First we will illustrate the need
for alternative approximation tech-
niques by briefly examining several
theories for which conventional tech-
niques are inapplicable. Then we will
discuss a number of examples of the
application of large-N expansions to
various types of quantum theories, and
we will describe some of the explicit
results that one may obtain. Finally,
we will describe more fully the connec-
tion between large-N limits and classi-
cal dynamics, and illustrate this con-
nection with the same set of examples.

Why bother with large N ?

The most commonly used method for
studying non-trivial quantum theories
is undoubtedly perturbation theory. In
many areas of physics, perturbative
methods form the basis for almost all
theoretical work. For example, all of

the predictions of quantum electrody-
namics—the most accurate physical
theory known today—are derived from
perturbative expansions in powers of
the fine-structure constant a.
However, in certain types of quan-
tum theories conventional perturba-
tive techniques are completely useless.
A particularly simple example is pro-
vided by a point particle moving in a
quartic potential, Vix) = ‘aax®. If we
start with the Schrodinger equation

[ — (#/2m)V? + Yoax*ix) = E, ¥ix)

and rescale the position, x— (#/
ma)'®x, it is easy to see that we can
write the energy E, of any eigenstate as

E, = (afi*/m*)"°K,

where K, is a pure number, completely
independent of the parameters e, fi and
m. In other words, any dimensionless
ratio of energies, such as E,/E;, is a
pure number that is not calculable by
any sort of expansion in powers of the
original parameters.

This same phenomenon occurs in
quantum chromodynamics, which is
widely believed to be the correct theory
of the strong interactions. This theory
describes the dynamics of quarks and
gluons, and is expected to predict the
binding of quarks into color singlet
bound states. Superficially, QCD ap-
pears to contain a single coupling
constant a,, analogous to the coupling
constant @ in quantum electrodynam-
ics. However, by a slightly more in-
volved scaling transformation, one may
show® that dimensionless ratios of
physical quantities, such as ratios of
the masses of different bound states,
are pure numbers independent of the
coupling constant a,. Therefore, per-
turbative expansions in powers of a,
are useless for computing the masses or
other physical properties of bound
states.

A final example of this type of
difficulty occurs in the theory of critical
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Probability distribution of an electron in a helium atom in A
dimensions, for six different values of M. The density of points is
proportional to the probability of finding one electron at a given
position relative to the nucleus and the other electron. The two small
squares at the bottom of each of these computer-drawn pictures
represent the helium atom's nucleus (left) and the fixed electron

(right). In each dimension, one electron is fixed at its root-mean-
square distance from the nucleus. As the dimension increases, the
probability distribution shrinks to a point. This is a consequence of
the fact that the limit N — is actually a novel type of classical limit.
When N is infinite, one can compute the positions of the electrons
directly by minimizing an appropriate classical Hamiltonian.
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phenomena. Physicists have learned
to describe the critical fluctuations that
are present at typical second-order
phase transitions by certain universal,
scale-invariant field theories contain-
ing no parameters whatsoever. These
theories characterize the behavior of
the critical fluctuations with a set of
critical exponents that, once again, are
pure numbers incalculable by conven-
tional perturbative techniques.

Now, in the case of a particle in a
quartic potential, one can use the
variational principle and directly con-
struct wavefunctions that yield the
ground-state energy, or other proper-
ties, to essentially arbitrary precision.
Hence, one need not regard the lack of
a systematic perturbative expansion as
a serious obstacle to understanding the
theory.

However, in most quantum field
theories the inherent complexity of the

theory makes the direct variational
construction of an accurate approxima-
tion to the ground state virtually im-
possible. Consequently, in QCD, for
example, the lack of any accurate,
tractable approximation method has
effectively blocked the calculation of
low-energy phenomena. As a result, it
is still not possible to confront with the
real world what should be the theory's
most basic prediction—the existence of
hadronic bound states.

Large-N expansions represent an at-
tempt to circumvent the failure of
conventional perturbation theory by
constructing a new expansion param-
eter “out of thin air.” By generalizing
a theory to a variable number of
degrees of freedom one introduces a
new parameter, 1/N. If the general-
ized theory is soluble in the limit of
infinite N, then a systematic expansion
in powers of 1/N may be a very useful

approach for studying the original fin-
ite-N theory and for calculating phys-
ical observables in that theory. Let us
look at a few examples of quantum
theories where one may use this ap-
proach:

» A particle moving in an arbitrary
potential V(x). We can generalize this
naturally to a particle in N dimensions
moving in a spherically symmetric
potential Vi|x|). Direct analysis of the
radial Schrodinger equation allows us
to compute the ground-state energy, or
other properties, as a power series in
1/N. Edward Witten, in his article
(pHYSICS TODAY, July 1980, page 38)
explains this in detail. In a similar
way, multiparticle systems with rota-
tionally invariant interactions may be
generalized to N dimensions and solved
in the limit N — «. The box below
shows some results for the quartic
oscillator and the helium atom.

Particle in a potential B AT
2 o5
= Exact (N =
z = 2 terms G
T, ExactiN-3) . 3F N
- ) E // 7
"‘E 2 terms "3_, 3 terms
o / B, 1 term
= > 2k
2 oaf 3 terms E
w Z
5 i
ju / E
! =
E 1 term E ] o
& =]
.2 =
-
a o
£ &
S 3 A s i L " 0 i L 1 )
> 30 12 G 4 3 = 30 12 6 4 3
DIMENSIONALITY N DIMENSIONALITY N
Quartic oscillator Helium atom
Hamiltonian: Hamiltonian:
(D 19 () i d 2 E;!
H=(pp/2m + (a/2N)x-x) H = (pyp)/2m + (ps:pa)/2m — 2e*  2e
ry [Ty [ry — 1y

Ground-state energy:

Ground-state energy:
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These results show the large-N behavior of the ground-
state energy of the N-dimensional quartic oscillator and
helium atom * Each series i1s evaluated at N = 3 and
expressed as the product of the known answer from
numerical calculations and a series that should sum to

unity. The figures show the partial sums of these series :
as functions of N. The helium-atom energy is expanded in
powers of 1/(N — 1) instead of 1/N because the ground-
state energy is known to diverge as N — 1. Therefore
1/(N — 1) should be a more natural expansion parameter.
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» Quantized scalar field theories.
These so-called A¢* theories are often
used to describe the interactions of
spinless particles. One can generalize
the theories to include scalar fields of N
components &, (x) whose interactions
are invariant under rotations in the N-
dimensional space of fields. (The group
of such rotations, denoted (XN), is an
example of a Lie group, or continuous
group of transformations.) A quantized
scalar field theory with N = 3 describes
the critical behavior in, for example,
isotropic (Heisenberg) ferromagnets;
the theory with N = 1 describes uniax-
ial (Ising) ferromagnets. One can use
standard functional integration tech-
niques or other methods to solve these
theories explicitly in the limit N —,
and to compute corrections systemati-
cally in powers of 1/N. Consequently,
ore can compute as a series in 1/N the
critical exponents of N-component sys-
tems that are invariant under transfor-
mations in the group (XN). This meth-
od for studying critical phenomena is
the only approach known whose appli-
cability is independent of the dimen-
sionality of the system. The box on
page 54 shows explicit results for some
of the standard critical exponents.

» Quantum spin models. These are
theories describing the dynamics of one
or more quantum spins. Each spin of
magnitude S has (2S5 + 1) independent
states, and the complete Hilbert space
for the system is the product of all the
individual (28 + 1)}-dimensional state
spaces. Acting on each spin is a set of
operators obeying the standard com-
mutation relations, and the Hamilton-
ian is a polynomial in all of the
different spin operators. We can gener-
alize this type of theory by simply
considering the magnitude of the spins
S to be variable, If we define N as 285,
then once again we can solve the theory
explicitly in the limit N —=. We can
apply an analogous treatment to spin
models in which these spins form repre-
sentations of arbitrary Lie groups.
Models of this type have been used
extensively in subfields ranging from
nuclear physics to quantum optics.
Results on the asymptotic large-N be-
havior of the energy spectra of these
models give a good approximation to
the exact spectrum, even for fairly
modest values of N. (See the box on
page 55.)

P A particle moving on the “manifold”
of a group and subject to a potential
that is an invariant function on that
manifold. (A group manifold is a
curved space whose points one can
identify with the elements of some Lie
group. A simple example is the mani-
fold for the group SU(2), which is the
surface of a sphere in four dimensions.
Theories based on group manifolds are
also known as single-matrix models,
because one can specify the position of

a particle by a single matrix in the
fundamental or defining representa-
tion of the group; in the Lie group
SU(N), for example, this would be an
N« N unitary matrix. One generalizes
these theories by allowing the basic
group manifold to vary over a sequence
of groups such as O(N), SUIN) or Sp(N).
Once again, observables such as the
ground-state energy or excitation ener-
gies behave smoothly as N —«, and
one can compute the limiting asympto-
tics explicitly, as the box on page 57
shows. In the limit N — -, these theor-
ies exhibit many features, including
phase transitions, that occur in much
more complicated theories, such as
lattice gauge theories.

» Quantum chromodynamics. This is
an SU(3) gauge theory containing
quarks, which come in three types or
“colors,” and gluons, which come in
eight types. We can generalize this
theory naturally from an SU(3) theory
to an SU(N) gauge theory, with N
colors of quarks and N° — 1 gluons.
The behavior of SUIN ) gauge theories
is believed to be very stable as N — = .
In fact, qualitative arguments sug-
gest'" that in the limit N —x, the
theory describes behavior surprisingly
similar to that of the real world. For
example, in the limit of large N, the
theory predicts that there are infinitely
many narrow resonances composed
purely of valence quarks, that one-
meson exchange dominates scattering
amplitudes and that Zweig's rule is
satisfied (this is the semiempirical rule
that describes the strong suppression of
hadronic processes that involve purely
gluonic intermediate states), Despite
considerable progress in understanding
the theory, no one has yet solved
explicitly the limit N — =, and for this
reason quantitative predictions are
still lacking.

In each of these examples, the
large-N limit simplifies the dynamics
while simultaneously preserving the
essential physical behavior of the
original theory. Stable helium bound
states, interesting ferromagnetic
critical behavior, and a non-trivial
meson spectrum, for example, all
persist as N —=» Such simplification
is the primary utility of large-N ex-
pansions. Whether the 1/N expan-
sion is guantitatively useful at a par-
ticular finite value of N naturally
depends on the details of the theory
In the simpler examples ol point par-
ticles or quantum spins (the boxes on
pages H2 and 55), the first term
alone frequently provides reasonable
accuracy for physically interesting
values of N. On the other hand, for
critical phenomena the available
large-N results (as shown in the box
on page 54) are only qualitatively
correct for real systems, for which
N<3. The accuracy of large-N re-

sults for quantum chromodynamics is
totally unknown today.

N ... as a classical limit

The fact that in such a diverse class
of theories one can increase the num-
ber of degrees of freedom in a way that
simplifies the dynamics, naturally
leads one to suspect some common
underlying structure. This is indeed
the case: We can understand every
known large-N limit as a special type of
classical limit. We can apply to large-N
limits the same steps that are used to
derive classical mechanics as the fi —0
limit of quantum mechanics,

It is appropriate, then, to discuss
briefly the quantum mechanics of a
point particle in the limit  — 0. Then
we can generalize the key steps in this
treatment in a way that produces a
completely general prescription for
constructing classical limits in arbi-
trary quantum theories. Finally, we
can apply this prescription to various
large-N theories to construct explicitly
the classical dynamics that reproduces
the N — = limit of the original quan-
tum theory.

A classical limit in any quantum
theory is a limit in which all quantum
interference effects disappear. To dem-
onstrate this in any particular theory
one must be able to construct a special
basis of states |z», which might be
called *“‘classical” or “coherent” states,
and show that any coherent superposi-
tion of these states, suchasa|z) + a'lz' >
becomes in the limit physically indis-
tinguishable from an incoherent mix-
ture of these states, represented by a
density matrix |a|*|z)z! + |a'|?|2 <2
Furthermore, one should then be able
to identify each of these special states
|2» with some point in a classical phase
space, and for some choice of classical
Hamiltonian show that the original
quantum dynamics becomes equivalent
to classical dynamies on this phase
space

Naturally, we may use this proce-
dure to demonstrate that the usual
fi —0 limit for a point particle in an
arbitrary potential is a classical limit
Clearly, we should choose the “classi-
cal” states to describe wave packets
that become increasingly localized in
both position and momentum as fi — (.
It is particularly convenient to choose
the well-known Gaussian coherent
states | pg |, with wavefunetions giv-
en by

X py

(mhl " expl(1/fipx -

Yotz — g)°]|

Note that the labels p and g simply
specily the mean momentum and posi-
tion of the coherent state:

Pylpipyr=p
pPaix py =9
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Critical exponents

CORRELATION FUNCTION < #(0) é{x)

N-component critical phenomena

DISTANCE x

Physical observable Definition

Critical correlation Gix)

Correlation length &= lim ( — G(x)/x)”

Susceptibility sz]:l"x Gix)

Critical behavior

lim Glx) =
N e

Hamiltonian:

H= J' d? 1 x Vo | [ + [VOEF + u2blx)P
+ (A/2N)[bix)-d(x)]*|
Correlation function:

Glx)=(1/N)}<d(0)-dbl(x) >

dlfk elk-:
2m? (k* +m?)

Gap equation:
m* = pu* + AG(0)
T-7T. m2

5

Exponent (d = 3)

Glx)~|x| “-2+", T=T. y="Y%[B/7N)]— (%PB/(PN]F + £(1/N°)

E~(T=T)"" T=T.

T P o ot G

v=1—Y%[8/7N)]+ £(1/N?)

y =2 — 3[8/(7*N)] + A(1/N?)

These are large-N expansions of selected critical exponents in three dimensions. Critical exponents characterize the
behavior of the correlation function G(x) near the critical point T.. The figure shows typical behavior of the correlation
function. It is easy to extract the limiting values of the exponents from the N—« limit of G{x), given above. The gap
equation implicitly determines the physical mass m. The critical point is defined as the point where m” vanishes. One
may systematically compute corrections to the limiting values of critical exponents.* For N = 3, the first two terms of
these series yield critical exponents v = 0.64, ¥ = 1.2 and n = 0.068, whereas the experimental values are approximately

v=0.71, y=1.4 and 5 = 0.04.

This set of states provides a complete
basis, so that any state may be ex-
pressed as a linear combination of
coherent states. The basis is “overcom-
plete” in that there are more than a
countable number of these states, and
states for different values of p and q are
not orthogonal; in other words, their
wave functions overlap to some extent.

The overlap of any two different
coherent states is Gaussian in form and
decreases exponentially as #i — 0. Fur-
thermore, matrix elements between
different coherent states of any reason-
able operator A vanish as fi—0, a
reasonable operator being one such as
any polynomial in ¥ and p with no
expligit fi dependence. In other words,
pqlA|p'\a>/paq|p'q> has a finite
limit as fi — 0. Consequently, measure-
ments with any reasonable operator
cannot distinguish a superposition of
different coherent states from a mixed
state as fi — 0, and quantum interfer-
ence effects between different coherent
states vanish as i — 0.

At this point, one may associate each
coherent state |p,g> with the point( p,q)
in the usual two dimensional classical
phase space, so that expectations of
quantum operators A become ordinary
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functions a on the classical phase
space:

alp,q)= }i{r})(p.Qlﬁ[p@)

Finally, one can show that expectations
of products of quantum operators fac-
torize in the limit

lim < pq|AB| pg> = alp@)b pa)

and that commutators of quantum
operators, divided by #, become classi-
cal Poisson brackets, which we will
denote by curly brackets:

lim (/) p.q||AB| p.g>

_ da(p,g) db(p,g)  dalpq) dbip.g)
dp dq dq dp
=|alpq), b p,g)|

This implies that_the quantum equa-
tions of motion, dA/dt = (i/fA)[H, A], re-
duce to the classical Hamilton equa-
tions, dal p,g)/dt = |h(pg), al p,g)|. In
this fashion, one can derive convention-
al classical mechanics as the fi—0
limit of the original quantum theory.

One may use essentially the same
approach to construct other classical
limits in arbitrary quantum theories.

In each case one must construct an
appropriate set of generalized coherent
states and show that these states be-
have classically in the limit. To learn
how to construct useful generalizations
of the standard Gaussian coherent
states, it is important to observe that
these coherent states may be defined by
the action of the Heisenberg group,
that is, the group of unitary transfor-
mations

Ul p,g,a)=explia/#flexplipx/f
< expl — igp/h)

applied to a single basic state |0). The
parameter « is a phase factor that is
required so that this set of operators
forms a group.

If one chooses the basic state to have
a simple Gaussian wavefunction

(x|0 = (7h)~ Vexp — (x*/2#)

then elements of the Heisenberg group
precisely generate the previous coher-
ent states up to an overall phase factor

U p,g,a)|0> = e“/*| p.g>

One may regard the fact that the
Gaussian coherent states form a com-
plete basis to be a consequence of the
fact that the Heisenberg group acts



irreducibly on the Hilbert space of the
particle. This means that there is no
nontrivial subspace of the Hilbert
space that is left invariant under the
action of all elements of the Heisenberg
group, or equivalently, that the only
operators that commute with all ele-
ments of the group are proportional to
the identity. This irreducibility imme-
diately implies the existence of the
coherent-state completeness relation

T :1127ﬁ}'[dpdq| P.g><{pq|

A general prescription. The observa-
tions in the preceeding two paragraphs
motivate the following general pre-
scription for constructing classical lim-
its in arbitrary quantum theories.”
P Find a Lie group G of unitary oper-
ators that acts irreducibly on the Hil-
bert space of the theory. We will call
this group G the coherence group.
We can represent elements of the co-
herence group as |expit, A, |, where
the set of operators | A, | forms a ba-
sis for the Lie algebra of the group G.
In other words, they satisfy the com-
mutation relations i[A,,Az]=c.;"A,
for some set of “‘structure constants”
[c.s"| that reflect the geometry of
the Lie group. For the Heisenberg
group, this basis is simply the set of
operators £/#, p/fi and 1/4.)

P Construct a set of coherent states
| lu>| by applying each of the elements
of the coherence group to some initial
state |0 |u>=U|0) for each element
Uin G. The irreducibility of the group
(G automatically implies that this set of
coherent states forms a complete basis.
» Show that in some limit of the the-
ory, different coherent states become
orthogonal. Specifically, if a param-
eter y of the theory such as # or
1/N vanishes in the limit, then the
overlap of different coherent states
must decrease exponentially as y tends
to zero.

These three steps are actually suffi-
cient to demonstrate that the limit
Y — 0 is a classical limit. If one defines
“classical” or “'reasonable” operators to
be operators A whoge coherent-state
matrix elements {u|A|u'>/<u|u'y have
finite limits as y — 0, then one may
show that the operators | yA,, |, or arbi-
trary polynomials in these operators
with no explicit y dependence, are clas-
sical operators. Measurements with
the set of operators {yA, | distinguish
different coherent states. However,
the fact that different coherent states
become orthogonal as y -0 implies
that no measurement with any classi-
cal operator can distinguish a superpo-
sition of different coherent states from
a mixed state as y — (. Thisshows that

quantum interference effects between
different coherent states vanish as
r—0.

One now associates each coherent
state with some point on a classical
phase space. A set of coordinates | £, |
on the phase space is provided by the
expectations of the operators | yA, |;in
other words

&= lim CulyA, |u>
x =4

defines the coordinates of the point
associated with the coherent state |u>.
(One may also describe the classical
phase space in a geometrical, coordi-
nate-free manner. Such a description
is given by a subspace known as a
“coadjoint orbit” of the Lie algebra of
G.) Because the coordinates |£, | dis-
tinguish the various coherent states,
the expectation of any reasonable oper-
ator A defines an ordinary function on
the classical phase space,

lim<ulAlu> = ald)

y -0
Once again, the absence of quantum
interference as y — 0 implies that ex-
pectations of products of operators fac-
torize

lim Cu|ABlu) = a(&)b()
]

Quantum spins

Values of ground-state energy — £/("; eN)
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COUPLING CONSTANT ¢

Large-N quantum spins
Hamiltonian:

H=¢[S, +(r/NX8,2—8,%), §%=(N/2KN/2+1)

Excitation energy:

|rf <1

l{l —r ‘2]112
0 [r| >1

Jgir_nx (E, —E,)/e=

Ground-state energy:

lrim E,/('/,eN) = min [cosf + ', sinf cos24 ]
= 1681

Irl <1

-1
= l —Yolr+1/r| |r|>1

These results show the large-N behavior for a theory of a
single quantum spin. This theory is equivalent to the
Lipkin-Meshkov-Glick Hamiltonian,

H = I/.‘.E(E aa', a,, +(r/N)
o

Z a-;-.ua p.-ua;l'_ nap. .x)

P ar

which models the interactions of N nucleons distributed
among two different N-fold degenerate levels. The index o
takes on values of + 1 and — 1, corresponding to upper
and lower levels, respectively; the integer p runs from 1 to
N. Shown is the behavior of the ground-state energy and
the excitation energy to the first excited state as a
function of the number N of nucleons and the coupling

constant r. Note how the variation with coupling constant
becomes increasingly rapid as N increases, and how in the

limit N —+ o it produces nonanalyticity at r = 1.
(Numerical data and figure adapted from reference 1.)
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Furthermore, one may study the be-
havior of commutators of guantum op-
erators, divided by y, and show that

lim i-.u||£1.§|m»
\ -0 "
datg) ablf)
e e e
gk, 9&g

[al&),b&)] (1

Here we assume summation over the
repeated indices. The right-hand side
of this equation can be defined to be the
Poisson bracket of the classical phase
space. Remarkably, all of the structure
needed to define the classical phase
space follows directly from the struc-
ture of the coherence group.

Note that equation 1 implies that the
quantum equations of motion, dA/dt =
i[H,A], reduce to the classical Hamilton
equations, da(&)/dt = | h,(£)alf)| with
the classical Hamiltonian given by

iy

(1l

ho (€)= lim y<u|Hu) 2)
¥ -0

provided yH is a “reasonable” quan-
tum operator.

This shows that if we can carry out
for a quantum theory the three steps of
our general prescription, then that the-
ory has a classical limit. From the
classical dynamics based on the Hamil-
tonian in equation 2, we can extract the
behavior of any physical observable as
t — 0. For example, to calculate the
low-energy spectrum of the theory, we
note that the ground-state energy is
given by

E, = (1/y)e

where ¢, is the minimum of the classi-
cal Hamiltonian h,(£). Expanding the
classical equations of motion,
&= |h,,&|. about this minimum yields
a set of small-oscillation frequencies
|w, |. These frequencies directly deter-
mine the y — 0 limit of the low-energy
spectrum of the theory; the excitation
energy to any low-lying excited state is
given by AF = Zn,w, for some set of
nonnegative integers |n, |.

Some simple examples

Let us now see how our prescription
for constructing classical limits applies
to various large-N theories. A single
particle moving in an N-dimensional
central potential provides the simplest
example. Because the Hamiltonian is
spherically symmetric, we may comple-
tely limit consideration to the rotation-
ally invariant, or zero angular momen-
tum sector of the theory. (One can
carry out a completely analogous dis-
cussion in any hxed-angular-momen-
tum subspace of the theory.) We will
require all physical operators to be
rotationally invariant. To construct a

useful set of coherent states, we must
first find & suitable coherence group
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that acts irreducibly. The simplest
choice is the group generated by the
operators x.x and (x:p+ px); our
group (7 is thus the set of operators

Ula,b) = exp (1/2) [ax-x + blx-p + p-x)]

No rotationally invariant operator, ex-
cept constants, commutes with all ele-
ments of this group, and consequently
it acts irreducibly. To construct coher-
ent states one applies elements of this
group to some initial state |0). A par-
ticularly simple choice for the initial
state is the standard Gaussian, given by

(x|0> = Cexpl — Yax-x)

For this choice, it is straightforward
to evaluate the resulting coherent-state
wavefunctions |u»= Ula,b)|0>. These
are simply new Gaussians

(x|uy = Qz) expl — Yazx'x)

wherez = e*" — ja(e*® — 1)/2b, and C(z)
is a normalization constant. The over-
lap of any two of these states is

"'H||H-_; =

[zf + 2/ (2t + 2028 + 2] M

which decreases exponentially as
N —-x if 2, #2,. Thus, if the parameter
t in the general discussion is chosen to
be 1/N, then all the requirements are
satisfied for the limit N — = to be a
classical limit.

If we define w as 1/(2Re z) and v as
— Im 2, then the generators of the
coherence group are given by

(1/N) Cu|x-x|uy=w and
(1/N) <u|x-p + p-x|uy=2vw

The parameters v and w may be used as
coordinates on the classical phase
space. The definition of the Poisson
bracket in equation 1 implies that v and
w are canonically conjugate: |v,w| =
2. Ifthe quantum Hamiltonian is given
by H='upp + NVix-x/N), then the
classical Hamiltonian is

h lvaw) = lim <u|H|u>
N--

= Yov?w + Yatw™ ' + Viw)

For large N, the ground-state energy E,
is given by Ne,, where ¢, is h, (v,,w,),
the minimum of the classical Hamil-
tonian. Small fluctuations about the
minimum are described by the differen-
tial equation &= — w*d, where § is
w — w,, and «- is proportional to the
curvature of the classical Hamiltonian
at the minimum. The frequency w is
the N -+ limit of the excitation ener-
gy to the first rotationally invariant
excited state.

This calculation of the low-energy
spectrum for a particle in an N-dimen-
sional central potential illustrates the
use of coherent-state methods to dem-
onstrate the classical nature of the
large-N limit. This particular example
is sufficiently simple that we could

have calculated the large-N behavior
of, for example, the ground-state ener-
gy equally easily by directly examining
the Schrodinger equation written in
radial coordinates, The most impor-
tant virtue of the coherent-state meth-
od is, however, the ease with which we
may apply it to more complex prob-
lems. In every case it is easy to carry
out the basic procedure of constructing
a suitable set of coherent states and
checking that they become orthogonal
as N —o. “Solving” the theory for
infinite N is then reduced to the
straightforward task of minimizing the
resulting classical Hamiltonian for
Ne= .

Helium atom. As an example, let us
look at the derivation of the large-N
behavior of a helium atom, that is, two
particles moving in a Coulomb poten-
tial in N dimensions. Here one simply
replaces the previous coherence group
by the group generated by the set of
operators (x,-x;) and (x,-p, +p,x,),
where 1 and j can be 1 or 2. Acting on
the standard Gaussian wavefunction
exp — Y2(x,* + x,%) this group gener-
ates a simple set of Gaussian coherent
states

(X, Xg|u) =

2
C(z}exp[ =Y Y X
=1
where z is now a 2 » 2 complex symmet-
ric matrix. Once again, these states
become orthogonal as N — = . The clas-
sical Hamiltonian that follows from the
quantum helium Hamiltonian

H=p*/2m + p,*/2m
— N%2e%/ |ry| + 2e*/ |1y
—é/|r; —1y))
is found to be

hy = (#/2m) tr{vwy + Yaw™']
— e[ 2w, )" + 2{w22J"f2
— (b +ltrgg — 2u0) 4]

The parameters w and v, defined above
in terms of Re z and Im 2, respectively,
are now 2 x 2 real symmetric matrices,
and are canonically conjugate coordi-
nates on the classical phase space.
Minimizing this Hamiltonian leads to
the first term in the large-N expansion
of the ground-state energy given in the
box on page 52

Quantum-spins. The natural coher-
ence group for quantum spin models is
the group generated by all linear com-
binations of the fundamental spin oper-
ators. In other words, the coherence
group consists of independent rotations
of each quantum spin. Acting on an
initial state where all spins are in the
highest state possible (in general, a
“maximal weight vector”), this group
generates a set of coherent states in
which each spin points in an arbitrary
direction. As N — - various coherent
states become orthogonal and the quan-
tum spin model reduces to a system of



Particle on a group manifold
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MASS GAP (E, - Eg)
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Hamiltonian:

COUPLING 4

H=1tr{(A/NE* + (N/AN2 — VvV —V")], VveU(N), 4

Ground-state energy:

. =8/m

lim E,/N*= T’;— + umzxswlu +4k?)

21/A.x1 — 1| K A"{“]
FECENEE K(/k), A<A.

Mass gap:

\ 2r kKR ', A>A,

o E'_E”:LTIKIU&}] S B
A Ek)/ k, A4,
A Bk — (1 —1/E9K(1/k), A<A,
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The graph and equations above give some characteristics of a particle moving on the manifold of the group U(N), for
large values of the dimensionality V. In the Hamiltonian, V is an N x N unitary matrix that represents the coordinates
of a particle on the manifold of the group U(N), and E is an N~ N matrix of conjugate momenta. The other equations

give the ground-state energy E,/N* and the mass gap (E,

— E,), in the limit N —x. The functions E(k) and K(k) are

complete elliptic integrals; the last equation shown determines the parameter k implicitly. The U(N) matrix model is
exceptional in that one may solve it exactly” for finite N. The ground state energy (divided by N*) is an extremely
smooth function of N. In fact for all couplings A and all N>2, the ground-state energy never differs from its N = o limit
by more than 2%. The graph shows the mass gap (E, — E)) as a function of coupling 4 for N=2, 4, 10 and «. Asin the
quantum spin model (the box on page 55), the crossover from weak to strong coupling behavior becomes increasingly

rapid as N increases, and, for N = «, becomes a genuine phase transition at 4 =

classical spins. For a single SU(2)
quantum spin, the classical phase space
is simply a two-dimensional sphere,
and the quantum spin operators S
become N/2 times a three-component
unit vector s, which describes the
classical spin:

(_u‘.giu) = (N/2)s

This leads easily to the results for large
N that are shown on page 55.
Particle on a group manifold. The only
essential difference between gauge the-
ories or matrix models and the previous
examples is in the complexity of their
coherence groups and classical phase
spaces. Even for a single-matrix model,
such as a particle moving on the group
manifold of U(N) (or equivalently, a
gauge theory defined on a lattice con-
taining four points at the corners of a
square), the coherence group is neces-
sarily of infinite dimension. If the
basic operators are the ‘matrix Vand its
conjugate momentum E, then one may
generate a suitable coherence group by
the set of operators tr(V') and
tr(EV* + V*E) for all integer powers .
One can explicitly construct the coher-
ent states that this group generates
when it acts on a simple initial state
defined by E/0) = 0, and thereby derive
the infinite-dimensional classical
phase space. Convenient coordinates
are provided by a function w(f), which
15 the density of eigenvalues of the
matrix V, and its conjugate momentum

v(#). The classical Hamiltonian corre-
sponding to a quantum Hamiltonian
such as the one given in the box above
is

hy = I dtl W BfAvia)*

+ (/3w O
—(2/A)cosf — A/12]

Minimizing this Hamiltonian subject
to the constraint [déwith =1 leads to
the results shown in the box.

Finally, for gauge theories, the re-
quirement that the coherence group
act irreducibly leads one to the group
generated by the set of operators triV,, )
and tr[Ex)V,, + V, Ex)]. Here V,,
which is defined as

expj A.dx
r

is the exponential of the integral of the
gauge field A along on an arbitrary
path I',, connecting the points x and y,
and the generators of the coherence
group include all possible closed loops
I',,. Needless to say, this group gener-
ates a very complicated set of coherent
states. Nevertheless, one can show
that the limit N o is a classical limit
for these states.”

Unfortunately, it has not yet been
possible to minimize explicitly the
resulting classical Hamiltonian.
Therefore, despite the fact that the
N — % quantum theory has been re-

duced to a classical theory, we still lack
explicit quantitative predictions. This
is an area of active research today, and
we will likely see further progress soon.
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