letters

issue until after heating the results from the Forum Symposiums on this question. One of the Forum speakers, Hans Bethe, gave a talk that showed beyond a reasonable doubt that the US was the aggressor in the nuclear arms race and that the Russians have been desperately trying to catch up! At the final Forum meeting I called for a vote on the question of a nuclear freeze, and there was almost a 100% show of hands!

At the 1983 Spring meeting, George A. Keyworth II, President Reagan's science adviser and the director of the Office of Science and Technology Policy, gave a talk in which he asked for help from the physics community to develop the technology for future antiballistic missile systems. I was the first to comment on his talk, and I argued that development of these types of weapons would expand the arms race and bankrupt the economy! The loud applause in support of my argument left little question that a large majority of the physicists have had enough of the arms race and would not support the development of Reagan's "Star Wars" weapons.

> BRYAN G. WALLACE St. Petersburg, Florida

More on Bronx Science

5/83

3/83

The fact that I am a graduate of the Bronx High School of Science heightened my interest when I read the article about the Science class of 1950 "One high school yields 8 PhDs and 2 Nobel laureates in physics" in February (page 53).

The two Nobel Prize winners notwithstanding, this yield of 8 PhDs was not unusual even after the three-or four-year period mentioned in the article. My graduating class (Science '57) produced 10 PhDs in physics and one in astronomy. Besides Leonard Susskind and Lillian Hartman, who were mentioned in the article, the people who went on to get PhDs in physics are: Leonard Feldman (Bell Labs), Lance Heiko (self-employed), Steven Holt (NASA), Ivan Kramer (University of Maryland), Leslie Levine (Federal Government), Michael Moldover (NBS), Ken Pickar (self-employed), and myself. Eugene Milone (Rothner Astrophysical Lab, Canada) received a PhD in astrophysics.

SAMUEL MARATECK New York University New York, New York

I would like to add my name to the list of Bronx Science graduates (class of 1960) who later went on to receive a PhD degree in physics. The research for my doctorate, received in October 1971, was an experimental study of vortices in helium-2.

3/83

MARVIN STEINGART Hughes Aircraft Company Fullerton, California

In the excellent news story by Gloria Lubkin about the Bronx High School of Science, a list is presented of graduates of the school between 1940 and 1960 who became physicists. Since I am identified as the compiler of the list. I wish to assure my fellow alumni that it was not meant to be complete as published, both because there were many more that I knew of than could conveniently be listed, and because I do not believe that I have identified all physicist alumni of Bronx Science. Since the article was published, a number of physicists who were not listed have written to me, identifying themselves and sometimes other graduates who became scientists. I very much appreciate this, and I would be happy to hear from other graduate of Bronx Science, physicists or otherwise. who would like to tell me something about their experiences at the school.

> GERALD FEINBERG Columbia University New York, New York

Secular correction

5/83

Regarding "New inflationary universe: an alternative to the Big Bang" (May, page 17), I would have expected the "three-week worship" to have been held at Canterbury rather than Cambridge.

JOHN S. McIntosh
Wesleyan University
5/83
Middleton, Connecticut
We did not mean to imply a religious
gathering, the correct word, of course, is
"workshop"—Editor.

Nuclear arms education

Congratulations on the fine special issue in March on nuclear arms education. The authors were obviously well selected, the topics most appropriate, and the emphasis on the normative role physicists have (as emphasized especially by Hans Bethe) makes it one of the most important issues ever published.

Many of us are teaching about the arms race. I teach a course on the topic in the College of Liberal Arts of the Rochester Institute of Technology. Normal enrollment in my course is 45 and I teach five sections per year—thus reaching 225 students directly. One of the outcomes of the classroom teaching has been frequent contact with stucontinued on page 86

CHARGE SENSITIVE PREAMPLIFIERS

FEATURING

- Thin film hybrid technology
- Small size (TO-8, DIP)
 Low power (5-18
- milliwatts)

 Low noise
- Single supply voltage
 168 hours of burn-in
- 168 nours of burn-in time
 MIL-STD-883/B
 One year warranty
- Imaging
 Research experiments
 - Medical and nuclear electronics

instrumentation

· Particle detection

Mass spectrometers

 Electro-optical systems

APPLICATIONS

Aerospace

Portable

ULTRA LOW NOISE < 280 electrons r.m.s.!

Model A-225 Charge Sensitive Preamplifier and Shaping Amplifier is an FET input preamp designed for high resolution systems employing solid state detectors, proportional counters etc. It represents the state of the art in our industry!

Models A-101 and A-111 are Charge Sensitive Preamplifier-Discriminators developed especially for instrumentation employing photomultiplier tubes, channel electron multipliers (CEM), microchannel plates (MCP), channel electron multiplier arrays (CEMA) and other charge producing detectors in the pulse counting mode.

Models A-203 and A-206 are a Charge Sensitive Preamplifier/Shaping Amplifier and a matching Voltage Amplifier/Low Level Discriminator developed especially for instrumentation employing solid state detectors, proportional counters, photomultipliers or any charge producing detectors in the pulse height analysis or pulse counting mode of operation.

6 DE ANGELO DRIVE, BEDFORD, MA 01730 U.S.A. TEL: (617) 275-2242 With representatives around the world.

Circle number 13 on Reader Service Card