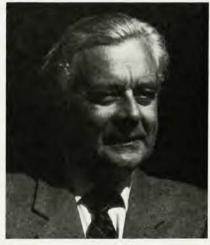
Coolidge Award for medical physics given to Webster


At its annual meeting in July, the American Association of Physicists in Medicine will present the William D. Coolidge Award to Edward W. Webster. Webster is now director of the Radiological Sciences Division at Harvard Medical School; simultaneously he is director of Radiation Safety at Massachusetts General Hospital and professor of radiology in the physics department there, and he also teaches medical radiation physics at the Harvard School of Public Health and radiology in the Harvard-MIT Division of Health Sciences and Technology.

The Coolidge Award is given annually to recognize outstanding contributions to medical physics. It was established in 1913 to honor William D. Coolidge, the inventor of the "Coolidge" tubes, a new type of x-ray tube.

Webster's first work in medicine was on therapeutic applications of megavolt x rays. In the course of this work, he developed, along with W. A. Moos, an automatic dose computer for use with this therapeutic technique. Webster was also one of the first to use totalbody radiation for the treatment of leukemia. In diagnostic radiology, Webster made significant contributions to the development of fluoroscopic imaging techniques and is currently studying the effect on image quality of various radiographic techniques. He has contributed to radiation safety by determining safe doses for diagnostic use, by assessing the general hazards associated with diagnostic radiology and by evaluating the effectiveness of radiation shielding. In fact, Webster holds a patent for composite shields for use with low-energy x rays. He has also been an active participant in numerous national and international scientific committees and panels. He has been an advocate for the development of safety standards and techniques for safe radiation use. He served on the National Academy of Sciences' Committee on the Biological Effects of Ionizing Radiation, and he was instrumental in the publication of the International Atomic Energy Agency's Atlas of Radiation Dose Distributions. Webster was also on the first Board of

Directors of the AAPM in 1958 and has been active in the Society ever since, serving in various capacities—as president and as the first editor of *The Medical Physicist*, among others.

After receiving his PhD in electrical engineering from the University of London in 1946, Webster was a research engineer in the English Electric Company until 1949. He came to MIT as guest researcher in 1949 and stayed to work as a radiation physicist with John Trump. In 1953 he began his association with the Massachusetts General Hospital as a physicist in the Department of Radiology there, and in 1954, as an assistant in radiology, he began an association with the Harvard Medical School which also continues to this day.

WEBSTER

Weisskopf wins Oppenheimer Prize

Victor F. Weisskopf, professor emeritus of physics of the Massachusetts Institute of Technology, has been given the J. Robert Oppenheimer Memorial Prize by the Center for Theoretical Studies at the University of Miami. Paul A. M. Dirac, the first winner of this prize, presented the award to Weisskopf and discussed his theory of variation in the universal gravitational constant at a special conference held to honor Dirac.

The Oppenheimer Prize is awarded annually to recognize outstanding contributions to theoretical and natural sciences, mathematics, and philosophy of science. Weisskopf was honored "for his achievements in theoretical quantum electrodynamics, the structure of the atomic nucleus, and elementary-particle physics."

While serving as group leader and associate head of the theory division for the Manhattan Project, Weisskopf contributed both to our understanding of nuclear energy and to our ability to exploit it. Weisskopf made most of his subsequent contributions to theories of nuclear reactions and to quantum electrodynamics while at MIT. He joined

the physics department there in 1945 and later became head of the theory group in the Laboratory of Nuclear Science. Weisskopf also played a significant role in the development of the European Center for Nuclear Research: While on a four-year leave from MIT 1961–64, he served as CERN's director, overseeing the completion of construction of the accelerator and the beginning of research. After his return from CERN he became Institute Profesor in 1966 and head of the physics department in 1967.

Weisskopf also took this opportunity to present a paper that reflected his desire that nuclear technology be used only for peaceful purposes and his belief that one of the most important deterrents to nuclear war is a strong public opinion against nuclear arms escalation. (See his Guest Comment, PHYSICS TODAY, March, page 9.) Weisskopf has been concerned about this issue since 1944 when he helped found the Federation of Atomic Scientists, whose purpose is to inform the public about the possible consequences of nuclear war and to support the peaceful use of atomic energy. As a member of