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Hydrodynamic systems often show an
extremely complicated and apparently
erratic flow pattern of the sort shown in
figure 1. These turbulent flows are so
highly time-dependent that local mea-
surements of any quantity that de-
scribes the flow—one component of the
velocity, say—would show a very chao-
tic behavior. However, there is also an
underlying regularity in which the
motion can be analyzed (see figure 1
again) as a series of large swirls contain-
ing smaller swirls, and so forth. One
approach to understanding this turbu-
lence is to ask how it arises. If one puts a
body in a stream of a fluid—for exam-
ple, a piece of a bridge sitting in the
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stream of a river—then for very low
speeds (figure 2a) the fluid flows in a
regular and time-independent fashion,
what is called laminar flow.1 As the
speed is increased (figure 2b), the mo-
tion gains swirls but remains time-
independent. Then, as the velocity
increases still further, the swirls may
break away and start moving down-
stream. This induces a time-dependent
flow pattern—as viewed from the
bridge. The velocity measured at a
point downstream from the bridge gains
a periodic time-dependence like that
shown in figure 2c. The parameter that
characterizes these changes in the flow
pattern is the dimensionless Reynolds
number y/P, which is the product of the
velocity and density times a character-
istic length (the size of the bridge pier,
for example) divided by the viscosity.
As iff is increased still further, the
swirls begin to induce irregular internal
swirls as in the flow pattern of figure 2d.
In this case, there is a partially periodic
and partially irregular velocity history

(see the second column of figure 2d).
Raise J? still further and a very complex
velocity field is induced, and the v(t)
looks completely chaotic as in figure 2e.
The flow shown in figure 1 has this
character.

These different flow patterns can
also be characterized by looking at the
power spectrum of the flow. The power
spectrum P(co) is the square of the
Fourier transform of the velocity field:

r= — dt e2tru"v(t)

P(co)=\V(a>)\2

The fourth column of figure 2 shows the
power spectra for the flow patterns
we've discussed. For the time-indepen-
dent flows, figures 2a and 2b, Pico)
shows a spike at zero frequency. In the
periodic region (figure 2c), additional
spikes appear at the frequency of the
oscillation and at its harmonics, that is,
at integer multiples of this frequency.
As the motion becomes partially chao-
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Simple mathematical systems exhibit complex patterns of behavior
that can serve as models for chaotic behavior, including perhaps
turbulent flow in real hydrodynamic systems.

tic, as in figure 2d, a broad, slowly
varying background appears behind
the spectral lines. Finally, the fully
chaotic flow has a power spectrum that
is apparently continuous.

We would, of course, like to under-
stand this transition to turbulence in
hydrodynamical systems. Unfortu-
nately, after many years of study by
scientists in many different disciplines,
we still do not have a fully satisfactory
approach to this problem. In this
article, I would like to describe an
extremely simplified model that shows
a kind of transition to chaos and to
discuss how the features of this model
can be, and have been, observed in
hydrodynamic systems.

The spirit of this approach is similar
to the one used in the theory of critical
phenomena in condensed-matter phys-
ics: To understand a complicated
phase transition—that is, a change in
behavior of a many-particle system—
choose a very simple system that shows
a qualitatively similar change. Study
this simple system in detail. Abstract
those features of the behavior of the
simple system that are "universal"—
that is, appear to be independent of the
details of the system's makeup. Apply
these universal features to the more
complex problem.

Our simple problem is so simple that
one might, at first glance, imagine that
it contains nothing of interest. But it
has an amazingly intricate and regular
structure. Consider a dynamical sys-
tem characterized by one variable, x.
At time zero, the value of this variable
is x0; at discrete later times t =jr it has
the value x,. The major assumption is
that the value of the variable at one
step Xj determines the value at the
next. Mathematically we write

xJ+l=R(Xj) (1)

where R(x) is a function that describes
the dynamics. Our job is to find time
histories of the system.2 That is, we
start from x0, find x, = R(x0), x2 = R(xx)
and so forth; we then look for patterns
in the sequence x0, x,, x2, One
simple visualizable model for such a
system is an island containing an insect
population which breeds in the sum-
mer and leaves eggs that hatch the next
summon our variable is the population
each ; nmer. Specifically, xs is the
ratio - -he actual population in the

summer of the jth year to some refer-
ence population. To make our model
explicit, we assume that the population
next summer x} ¥ ^ is determined by the
population this summer via the rela-
tion

Here there are two terms. The first
term rXj represents the natural growth
rate of the population; the term sx^
represents a reduction of this natural
growth caused by overcrowding of the
insects. When r is greater than 1, the
first term simply expresses an increase
in the population by a factor r in each
year. If this were the only term, the
population would grow exponentially.
The second term represents the reduc-
tion in the population growth caused
by, for example, competition for re-
sources (or perhaps shyness) of the
insects when the population is large.
By rescaling, that is, by letting x] be
replaced by (rls)x}, one can convert this
equation into a standard form:

•*•_/ + I
= rx , ( l -X: (2)

We wish to examine the long-term
behavior of the population, or of xJt

based upon equation 2. In particular,
we are interested in how this behavior
depends upon the growth rate r. We
can think of r as being akin to the
Reynolds number in the hydrodynamic
example. To keep the insect popula-
tion ratio in the interval between 0 and
1 we limit our examination to values of
r between 0 and 4.

First we study the behavior for small
r. If r is less than 1, the insects are
living in such an inhospitable environ-
ment that their population will dimin-
ish each year. Their population pat-
tern is like that shown in figure 3a. If,
for example, r = V2 and one starts from
x0 = V2) then x, is Vs and each succeed-
ing Xj is less than 2 ' ' + 2I. The popula-
tion simply dies away to zero, for all
starting values. This result is summar-
ized in figure 4 in which we plot
eventual population values as a func-
tion of r. For values of r below 1, the
eventual population is zero. Roughly
speaking, we might think of this behav-
ior as akin to the laminar (smooth) flow
in figure 2a.

The region of r between 1 and 3
shows another kind of simple behavior,

perhaps akin to the time-independent
swirls of figure 2b. If we start with any
x0 between zero and one, the population
approaches a constant but non-zero
value. This constant population, x*
can be found by replacing both x} and
xJ + 1 in equation 2 by x*:

x* =rx*(l -x*)

which has the two solutions x* — 0 and

x* = 1 - \lr (3)

Such a self-generating value of x is
called a fixed point. The zero-popula-
tion solution is unstable. If we start
with a very low population (see figure
3b), the population will increase year
by year until it settles down to the
value given in equation 3. The final
populations 1 — 1/r are also plotted in
figure 4. This behavior might be con-
sidered to be compatible with the time-
dependent flow of figure 2b.

Thus the region in which r is below 3
is easily understood. No chaos has
arisen so far. Now jump to r = 4.
Figure 3c shows the values of x induced
at this value of r, starting from
x0 = 0.707. Apparently the population
Xj assumes all values of x in the range
between zero and one starting from this
point. Although xJ + n is uniquely de-
termined by Xj, for large n the pattern
of determination looks chaotic rather
than—as it is—deterministic. For
small n, one can see patterns (for
example, that small Xj produces small
Xj + j) but these correlations become
invisible as n—»oo. What we see is
apparent chaos.

For r = 4 (only!) one can solve equa-
tion 2 by the simple change of variables

Xj =(1 - cos 2n-<9, )/2

Then equation 2 can be converted into
the statement

V2(l -COS2TT-(9, 4 j)

= 4[V2(1 - cos 2jrf?,)]

X[V2(1 + cos 2-rrO, )}

= V2(1-COS47T0,)

which has as one solution 0J + 1 = 20} or

0j=2J0o (4)

One can see the chaos in the solution
quite directly. Since x; is related to
cos 2v0j, adding an integer to 0J (or
changing its sign) leads to the very
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Turbulent flow patterns as drawn by Leonardo da Vinci. Note how the large swirls break into
smaller ones, and these again break up. (From the Royal Library, Windsor Castle; reproduced
with permission.) Figure 1

same x,. Hence if one writes Oj in
ordinary base-10 notation as, say,
8j = 11.2693 . . . one can simply throw
away the 11. Better yet, if one writes 60

as a "decimal" base 2, as for example
A 1/ , 1/ , 1/ I 1/ I

#u = 12 + '8 + /16 + '64 + • • •

= 0.101101 . . .
then the multiplication by 2 is simply a
shift in the "decimal" point, so that

9l = .01101 . . .

Joseph Ford's article, "How random is
a coin toss?" April, page 40.)

In fact, the calculation represented
in the picture of Figure 3c is, in some
sense, incorrect. It was calculated on a
computer with 16 decimal digits. After

about 50 steps, an initial error of 10 16

grows to be an inaccuracy of order 1.
Consequently, all the points after step
50 are wrong, representing some ran-
dom effect in the computer, and not a
selected initial value.

This might be an appropriate point to
mention that one of the major sources
of modern stochastic theory is the work
of the meteorologist Edward Lorenz.3

As an analog to weather forecasting, he
studied systems like our r = 4 system,
in which the final state is an extremely
sensitive function of the initial state.
For this kind of system, as the predic-
tion period grows longer, both the
initial data needs and the computa-
tional power required grow exponen-
tially. True long-range detailed
weather prediction is, in practical
terms, impossible.

The system at r = 4 is chaotic in
another sense. For almost any ran-
domly chosen x0—or 00—the set of
resulting 6j will be uniformly distribut-
ed between 0 and 1. Correspondingly,
we will get a set of x, 's in which the
probability p( y) that x, will have the
value between y and y + dy is propor-
tional to (yd — y))~1/2 for almost any
starting point. Thus the time average
for this chaotic system is the same for
almost every starting point.

We have inserted on the right-hand
side of figure 4 this distribution for this
value of r by showing all x between 0

Flow pattern Velocity history Power spectrum

93 = .101 . . .

04 = .01 . . .

Thus, if we start out with any <90, the 0,
produced will depend on the jth and
higher digits in 0n. This gives us one
possible definition of chaos: For large,/'
the dynamical variable xy has a value
which is extremely sensitive to the
exact value of xn. In our case, suppose
we have two starting values x0 and x,,'
that differ by a small number e and
generate two sequences of populations
Xj and Xj' based, respectively, upon x0

and x0', then aftery steps, the difference
grows to the value 2]e. (See also

Patterns of hydrodynamic flow for various
Reynolds numbers .v. At small values of.//

the flow is laminar (a); as .// is increased, the
flow becomes first periodically undulating (c)

and finally turbulent (e). In the graphs for
each Reynolds number, we plot the time

variation of one component of the velocity as
measured, for example, at the indicated point

in the sketches; we also show the power
spectrum P(a>) for these time variations of

the velocity. Figure 2
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and 1 as possible long-term values. Description
A final definition of chaos is that the a

power spectrum >-

Population history Power spectrum

P(o))= —
N

(5) _

has broad spectral features. For r = 4
and large N, the power spectrum can be
calculated exactly. For almost any x0 it
is perfectly flat.

There are some special values for x0

that generate exceptional patterns of
Xj. We can see these patterns more
readily if we first note that one can
always choose 8, to be in the interval
between 0 and %, because Oj can be
flipped in sign and shifted by an integer
without changing Xj. Thus, the recur-
sion relation for 0,- can be written as

J20,- for O<0,<V4
6 j . - 2 0 , for V.2<0J<V2

(6)

Any rational number that is chosen for
90 will lead to a recurring pattern of 9}

and Xj. For example, if we take 80 = V3
then all subsequent 0, are also %, so
this is a fixed point. If one starts with
00 = V5 then the subsequent dj are %,
V5, %, % and so forth. Thus we have a
cyclic behavior with a period of length
2. One solution that has period of 3 is
V2, %, %• Equation 6 has periodic
solutions with all possible periods.4

Now we have long-term solutions for
equation 3 that are time-independent
for r between 0 and 3 and one that is
quite chaotic for r = 4. Next, increase r
from 3 and observe the first hints of
chaos which arise. As r increases just
above 3 the fixed point at x" near %
becomes unstable; instead, the popula-
tion keeps flipping back and forth
between high and low values. The
insects start from a low population.
They reproduce avidly, leaving a large
number of eggs. But the resulting
population next year is too crowded (or
shy), so the population the year after
will be low. Thus, odd years will have
high populations, even years low popu-
lations. The Bible records5 that Joseph
predicted such a periodic behavior with
a basic time step of seven years. In our
model the exact values of x for the two-
cycles are

x = V2(l + 1/r)
± V2[(l + l/r)(l - 3/r)]1'2

These q = 2 cycles remain stable over
the range of r between 3 and 1 + \[6
= 3.4495. I will call this upper value of
r at which the two-cycle becomes unsta-
ble r2. For r slightly larger than r2, the
stable behavior is a four-cycle, as shown
in figure 3e. The basic period of the
behavior has doubled once more. This
behavior is also only stable up to a
limiting value, r4. Above rA an eight-
cycle a;;: =ars and remains stable
between and r8, whereupon a six-
teen-cyc appears. These stable beha-
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Behavior of a population that obeys a simple nonlinear reproduction equation (see the text).
We show both the time evolution and the corresponding power spectrum of the population for
various values of the growth parameter r. For growth parameters above 3.0, no stable population
is reached; in the cases shown here the population oscillates over a varying number of cycles.
The oscillations show up as peaks in the power spectrum, with each higher-order cycle
contributing less than the earlier cycles. Figure 3
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viors are shown on figure 4 as doublings
in the number of .t-values which the
system assumes as j becomes infinite.
Successive doublings continue until at
rc = 3.5699 . . . , when a cycle of infinite
length appears.

To see the beginnings of the onset of
chaos in this model, look at the power
spectrum defined by equation 5. When
the fixed point is the stable behavior,
the power spectrum is a spike at zero
frequency. When the two-cycle ap-
pears, another frequency, co = \ , ap-
pears in the spectrum, as figure 3d
shows. This frequency is, of course,
equal to the inverse period of the
motion. Between r2 and r4, co = % and
co = % also enter, as in figure 3e. As
the period increases, more and more
spectral lines enter until at r, there are
infinitely many lines.

Of course, a spectrum with an infi-
nite number of discrete lines is not the
same as a broad-band, continuous spec-
trum. Even at r = r(. there is no fully
developed chaos of the type that occurs
at r — 4. However, in this model, the
development of an infinite number of
lines through successive period dou-
blings is a major step toward the
production of chaos.

To see the remaining steps, turn to
figure 5. This picture is, like figure 4, a
depiction of the populations that arise
after a huge number of iterations of an
initial x0. Our job is to understand how
this picture changes between rc and 4.
We shall discuss the predominant fea-
tures of this development, leaving out
for the moment small regions—which
appear as white stripes in the more or
less uniformly gray area—in which
stable cycles once again dominate the
picture.

We start at r = 4 and decrease r. As
we saw, an initial xu generates points
that move erratically through an entire
band of permitted jc-values. As r de-
creases, this band narrows slightly to
be between r(l — r/4) and r/4, but the
behavior is otherwise qualitatively un-
changed. The spectrum contains no
sharp peaks. However, below the value
labeled r2' the behavior changes. The
band splits into two. Between r/ and
r4', the population is somewhere in the
lower band on even steps; on odd steps
it lies somewhere in the upper. The
spectrum then has a broad background
produced by the erratic values the
population assumes in each band and a
sharp peak at co = V2 produced by the
regular way it jumps from band to
band. Then at r4' the behavior changes
once more. There are four bands,
which we can number from bottom to
top as 1, 2, 3, 4, and the motion goes
from band 1 to 3 to 2 to 4—which is, not
accidentally, exactly the same ordering
as the motion in the four-cycle. As r
decreases beyond r8' there are eight
bands, then beyond r16' sixteen, and so

GROWTH PARAMETER r . .

Stable values for the population as a function of the growth parameter r. The solid lines show
the values of the population x, that recur as/becomes infinite. For growth parameters/-below 1,
the population decays to 0. For r between 1 and 3.4, there is no single stable value—instead the
population oscillates between the two values in the upper and lower branches of the curve.
Above 3.54, the population oscillates among the four branches, and so forth. These oscillations
give rise to the peaks in the power spectrum shown in figure 2. Note the highly nonlinear scale.
Note also the break at 3.569; the subsequent behavior for growth parameters between 3.569
and 4 is shown in figure 5. Here we indicate only the continuum of values allowed as the popula-
tion approaches the truly chaotic behavior at r=4. Figure 4

forth. When there are 2" bands, the
population returns to a given band
after 2" steps but the exact point at
which it returns is chaotic in exactly
the same sense as there is chaos at
r = 4. In this region of 2" bands there
are sharp spectral lines at 2 " times
an integer together with a broad back-
ground produced by the erratic behav-
ior in the band. To the naked eye this
erratic behavior looks very much the
same as the r = 4 chaotic motion. The
only differences are ones of scale. In
this 2" -band case, the erratic motion is
confined to a set of narrow regions,
inside each band. Furthermore, the
motion only returns to the band every
2" steps, so that as we change values of
r, there is a change in the time-scale as
well. (A reader who is acquainted with
renormalization and scaling might
wonder whether this change of scale
might be used to build a renormaliza-
tion-group analysis of the period-dou-
bling process. It can, and has.6)

This process of successive band split-
tings enables the system to interpolate
smoothly between the full chaos at
r = 4 and the 2"' cycle at r,.. As r
approaches rL. from above, we get more
and more bands until at rt. there are 2"
bands, each of them infinitesimally

narrow, and merging into the infinite
number of lines just below rc.

All of this so far has applied to our
simple model, given by equation 2.
However, it is important to notice that
the general nature of the processes of
period doubling and band splitting are
independent of the details of the model
and will occur with any mapping of the
form

Xj + i =rf{Xj)

with /(0) = /U) and f being a smooth
function with a single maximum in the
interval 0 to 1.

Furthermore, Mitchell Feigenbaum
has looked6 at several maps and demon-
strated that some of the quantitative
properties of the behavior of band
splitting and period doubling near rc—
that is, for large numbers of periods—
apply equally well to almost all maps
with a smooth maximum in which f"{x)
is negative at the maximum. In parti-
cular recall that rq and rq' are, respec-
tively, the values of r at which a q = 2"
cycle first appears or q = 2" bands
merge. (Again, refer to figures 4 and 5
for a depiction of these bands and
cycles.) As n becomes infinite, these
limiting values both approach the same
limiting value rc. Feigenbaum showed
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that for large n they approached rc in a
very simple manner, namely:

rq - rc = AS ~ "

Here A and A', naturally, depend in
detail upon the mapping function fix).
However, the exciting and surprising
result of his work was that S is univer-
sal: It does not change as we change
the mapping function f. A similar
result is obtained for the splitting of the
Xj values. When one chooses in an
appropriate fashion two neighboring
values for Xj that lie in a 2" -cycle, one
finds that the separation between these
values decreases with n as Ba ~ ", where
a is universally equal to 2.503....
Feigenbaum has also given a renormal-
ization group treatment that verifies
this universality and generates the
universal numbers S and a.

If these quantitative results for large
n apply to all mathematical maps,
might they not also apply to real
dynamical systems? In particular, if
we use x, to refer to some dynamical
property at time t and let fix,) describe
how the dynamical property at time t
determined its value at time t + r, will
we be able to see the period-doubling
behavior our maps show?

Nonlinear electrical circuits have
been shown7 to give a very similar
behavior to the one described above.
As a control parameter, r, in the circuit
is varied, one of the circuit variables,
such as a voltage, traces patterns in
which successive period doublings oc-
cur. Moreover, the observed values of a
and S are the same as the values
mentioned above.

It is not surprising that simple cir-
cuits, which can be described in terms
of a few variables, show identical be-
havior to the mapping problems. But,
what of real hydrodynamical systems?
They are much more complex. Can
they show this behavior also? One
class of studies that could make contact
with this theory of dynamical behavior
is the experimental work on the Ray-
leigh-Benard instability in fluid sys-
tems. When an enclosed fluid is heated
from below, at low heating rates, no
flow occurs. At higher rates, time-
independent convection is set up. At
higher rates yet, a periodic time depen-
dence appears. At still higher rates,
the time dependence looks very chaotic
and has a broad band spectrum. In a
small system containing helium at low
temperatures, Albert Libchaber and
Jean Maurer observed8 a series of
successive period doublings. When
they adjusted the heating rate very
carefully, they could see the power
spectrum shown in figure 6. Notice the
qualitative similarity between this
spectrum for a real hydrodynamic sys-
tem and the spectrum shown in figure
4f. Thi- connection is, however, more

than qualitative. The relative heights
of the weaker spectral lines are predict-
ed to be universally determined by the
properties of the high-rc band splittings.
In particular, one can determine the
quantity a from these heights. There is
a quite satisfactory agreement between
this experimental value of a and the
one calculated by Feigenbaum's renor-
malization-group analysis. Hence, one
route to chaos in one real system may
be said to be largely understood.

However, this is only the beginning
of the story—not the end. Libchaber
and Maurer's cells are rectangular in
cross section. Giinter Ahlers and Rob-
ert Behringer have done8 a series of
parallel experiments on cylindrical
cells. They observe a different route to
chaos. In fact, the period-doubling
route appears to be rather rare. Are
there other relatively universal routes
to chaos observable in real systems?
Can they also be analyzed in terms of
very simple models? We do not know,
but there are a large number of
workers trying to find out.

Because the experiments show addi-
tional roads to chaos, it is sensible to
look back at the general mapping
problems described by equation 1 and
see whether they, too, have additional
paths to interesting behavior. In fact,
the recursion relation we have been
studying, equation 2, does show one

more class of chaotic transitions. No-
tice the vertical white stripes in the
broad bands of figure 5, in particular
the widest one, labeled C3. At the right-
hand margin of C3 the motion becomes
disordered in the way I have described.
But at the left-hand boundary of this
region the long-term stable motion is
the three-cycle. As r increases above
this boundary value, r3, there are
periods of disordered motion followed
by long periods (which have a length of
order \r3 — r\~1'2) of very orderly mo-
tion in which the system looks very
much like it is undergoing cyclical
motion of period three. As this almost
cyclical motion progresses, there is a
gradual drift away from the period-
three cycle elements. Finally the popu-
lation elements get far enough away so
that once again there is a period of
apparently random motion. That is,
there are long orderly periods mixed
with bursts of disorder (see figure 7).
This kind of behavior is called intermit-
tency and has been studied in some
detail.9 It also has been observed in
experimental systems, but to date the
detailed correspondence between the
model systems and the real ones has
not been fully worked out.

In the examples I have mentioned so
far, the fact that the models all exhibit
chaotic behavior is related to the fact
that the mapping function fix) has a

z

o

0
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I I I I I
r , = 4 . 0

GROWTH PARAMETER r

Transition from cyclic to chaotic behavior. The graph shows points that arise during 20 000
iterations in computing values of population for some initial value. As the growth parameter r in-
creases from 3 to rc the population oscillates among 2, 4, 8 , . . . 2" . . . values. At rc the infinity of
lines becomes an infinity of bands; the values of the population oscillate in a regular fashion
among the bands, but take on random values within each band. As r increases above rc, the
bands merge, until for values of /"above rz' there is only a single band of values that the popula-
tion assumes chaotically. The thin white stripes, such as the region labeled C3 represent periods
in which the population assumes regular values for much of the time and is only intermittently
chaotic. While the scale in figure 4 is highly nonlinear, the scale here is linear. Figure 5

PHYSICS TODAY / DECEMBER 1983 5 1



250

FREQUENCYo (mHz)

Power spectrum for convective flow in a small cell containing liquid helium, just above the Ray-
leigh-Benard instability. The cell is heated from below and cooled from above. Under the
conditions of this experiment, the regular convection has given way to a chaotic behavior, but
with some regular components—like that shown in figure 2d—similar to the behavior of the
population for a growth parameter somewhat above rc. The experimental curve is in black; the
colored vertical lines indicate the theoretical positions of the peaks and reflect their predicted
heights; the numbers on the theoretical lines give their order, that is the number of period
doublings involved in the line. There is a fundamental frequency of oscillation (near 500 mHz);
the other oscillations occur at multiples of f/2", with n the order of the oscillations. (Adapted from
reference 8) Figure 6

the subsequent motion will be of the
form

Xj =jw + <p(jw) (8)

where (j>(t) is a periodic function of t
with period 1.

As k passes through 1, the cyclical or
commensurate motion persists. Near
the fl-values which produced commen-
surate motion for k < 1, there is also
orderly cyclical motion for k > 1. How-
ever, infinitesimally close to each value
of fi that produces an incommensurate
motion for k just below 1, there is for k
just above 1 a domain of (I in which the
motion is chaotic. That is, the incom-
mensurate motion becomes unstable to
chaos at k = 1.

This instability has not yet been
analyzed in detail. However, the in-
commensurate motion at k = 1 has
been analyzed by two groups,10 in
particular for the case in which the
average speed is w = (45 — l)/2. (Oth-
er irrational values of w will probably
show qualitatively similar but quanti-
tatively different behavior.) They con-
clude that equation 8 still describes the
motion, but that the continuous func-
tion <t>(t) is very bumpy indeed at k = 1,
while for k below 1, it is quite smooth.
By quite bumpy I mean something
rather specific and rather specifically
awful. Consider the derivative of <j>,
<p'(t), in some small region of t. Pick the
interval to be as small as you like.
Furthermore pick some big number
(say 1050) and a small one (say 1CT50).
Now let k approach closer to one, but

maximum at some value of x. Maps
that do not have a maximum—such as

xJ + 1 =Xj + t l - (k/2n)sm2nxj (7)

for \k\ below 1—cannot show any
chaotic structure. These are called
"no-passing" systems for the following
reason. Imagine that you start with
two points xa and x0' and go through j
steps to obtain Xj and x}', respectively.
In these systems it turns out that if
x0<x0' then it is always true that
Xj <Xj', that is, the sequence xt never
passes the sequence x/. For the map
above, with \k] < 1 there are two kinds
of stable motions, both being smooth
and unchaotic. For some values of il,
the system falls into a cycle of length
q in which x advances by p units in
the q steps. In this motion
xJ + q =Xj + p and the average rate of
advance of x, w, which in this case is
plq, is a rational number. This mo-
tion may be described as commensur-
ate in the sense that the cycles are
commensurate with the period of
sin ITTX in equation 7. On the other
hand, fi may also be chosen so that
the average rate of advance per step is
irrational. In this incommensurate
motion, if one starts from xn = 0 then

40 60
TIME |/3

Intermittency: a brief stop at nearly regular behavior on the road to chaos. The graph shows val-
ues of the population for a growth parameter just above the lower boundary of the region marked
C3 in figure 4. At that slightly smaller value, the behavior is periodic, with three stable values for jr
0.5, 0.96 and 0.16. Here we have plotted only every third value of x. The population behaves in
an orderly, period-three manner for long stretches of time, but intermittently, and at irregular in-
tervals, behaves chaotically. Figure 7
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always from below. Just so long as k is
below 1, <t>'{t) is smooth and is always
greater than zero but not infinite.
However, although <f>' is smooth, it is
very steeply varying. Thus, for exam-
ple, I can always find some value of k,
close to one, in which (j>'(t) takes on both
the value of your big number and also
that of your small one in the specific
interval you have chosen. If you choose
more extreme numbers, I just have to
go closer to k = l. Clearly, we have
reached a situation in which 4>(t) exists
and describes a more or less physical
problem, but the function in question
is, at k — 1, not differentiate any-
where.

This strange mathematical behavior
can be seen experimentally. It results
in a power spectrum which contains an
infinite number of discrete lines which
are bunched together and pile up to-
ward co = 0.

Experimentalists will, no doubt, be
looking for power spectra of this char-
acter to observe the onset of chaos in
the theoretically predicted manners.
Also, theorists will, of course, be look-
ing in their models and at experimental
data hoping to see new forms of the
onset of chaos.

This paper was written while I was in Israel
enjoying the hospitality and support of the
Israel Academy of Sciences and Humanities
of Tel-Aviv University, and of the Weizmann
Institute. It has been my pleasure to learn
about dynamical systems from M. Feigen-
baum and my students David Bensimon,
Scott J. Shenker, Michael Widom, and Al-
bert Zisook. Bensimon has helped in the
production of some of the figures shown here.
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