microcomputers

An ordinary personal computer can be used
to do large-scale calculations in physics at a great savings in cost
and added personal convenience for the researcher.

Per Bak

In the past year or so, the sale of
microcomputers has increased from a
few thousand to millions a year. To-
day, you can walk into a toy store and
buy a computer for a few hundred
dollars. Most micros are probably used
for recreation, and until recently they
have not been taken very seriously by
scientists.

But we are in the middle of a
revolution; I believe that in the near
future most calculations in physics will
be done on these “home computers.”
The cost will be but a fraction of that
for central-processor time at a typical
computer center. Moreover, the micro-
computer is accessible to physicists 24
hours a day; when a problem arises,
physicists can start calculating, there-
by avoiding the delay and other an-
noyances that arise when dealing with
funding and computer-center bureau-
cracies. Physicists will be in full con-
trol and will be able to plan their work
accordingly. In this article, I plan to
demonstrate that today's off-the-shelf
micros can perform very demanding
physics calculations at speeds not much
slower than those of modern full-size
computers.

Technically, there is little difference
between a microcomputer and a large
computer. In both, the brain is the
central processing unit, which per-
forms extremely simple manipula-
tions—additions, subtractions and 10_gi~
cal operations, for example—with
numbers stored in the memory. All
information must pass through this
bottleneck. In the home computer, the
cpu is a simple microprocessor. A large
computer has more memory ;.1‘nd' more
peripheral equipment, and so it is well
suited for handling huge quantities of
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data, each piece of which requires a
small amount of simple processing
(large-scale bookkeeping and so on).
But in physics we are typically dealing
with a relatively small quantity of data
that requires a large amount of process-
ing, so most physicists really do not
need the facilities provided by a large
computer. There is a significant differ-
ence between the computational needs
for running a bank or organizing a
library and doing calculations in phys-
ics!  With the microcomputer, the
physicist pays only for what he needs:
central processing time. Because of the
enormous overhead (buildings, person-
nel and so on), computer centers charge
typically $500 per cpu hour; the cost of
doing the same calculation on a micro-
computer may be only a few cents!
Furthermore, home computers are cer-
tainly going to be even more powerful
in the near future. In this light, it is
very likely that most calculations in
physics will be performed by the home
computer in the future.

To be specific, let me illustrate the
considerations above with a concrete
example. (The box on page 27 describes
another.) In my own field, solid-state
physics, Monte Carlo simulations are
among the most demanding types of
calculations, requiring days or weeks of
cpu time on large computers. Monte
Carlo simulations are used typically to
find phase diagrams and investigate
critical properties near phase transi-
tions. A standard model for studying
phase transitions is the Ising model of a
ferromagnet. In three dimensions, the
model cannot be solved analytically, so
one is left with a numerical approach.
As [ will show, even a “'state-of-the-art”
Monte Carlo simulation on the three-
dimensional Ising model can be per-
formed efficiently on a micro.

Monte Carlo simulation

We consider the simple d-dimension-
al Ising model with spins o, = +1
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arranged on a simple cubic lattice with
linear dimension V. The energy of the
various states of the model is given by
the Hamiltonian

H= - Y 0,0
¥}

where the summation is over nearest
neighbor pairs of spins. Clearly, the
ground state at 7= 0 is one where all
the spins are aligned, o, = +1 (or

1). For an infinite lattice there is a
transition at a critical temperature 7.
from a high-temperature disordered
paramagnetic phase to the low-tem-
perature ordered phase where the spins
are partly aligned so that there is a net
magnetization, M = 3{o,>/N?. The
thermal expectation value (o, > is de-
fined as a weighted average over the
Boltzmann factor
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o
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Because the summation is over 2V
states each involving NY spins, an
exact calculation is not possible even
for lattices of moderate size. In the
Monte Carlo method, a representative
sample of states is generated by a
sampling technique that weighs states
according to their importance. Succes-
sive states are generated by moving
from site to site and flipping spins with
probability

AE/T

for AE~0
1 for AE <0

where AF is the change in energy
caused by the spin flip. Estimates of
thermodynamic functions such as the
order parameter M are obtained by
averaging over the states obtained in
this way.

To perform this calculation, T used a
very inexpensive home computer, the
Commaodore VIC20, with 20 kilobytes of
memory and a cassette recorder to
store programs. The computer is con-

e
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nected to a standard color tv, which is
the output medium. (Each byte con-
sists of eight bits). To use the memory
in the most efficient way, each spin is
stored in just one bit (*'multispin cod-
ing"'). The program uses not more
than 2 kbytes of memory, so there are
at least 18 kbytes left for storing spins,
that is, there is room for 18 000 < 8, or
144 000 spins. The linear dimensions
of the lattices used in my calculation
are not larger than N = 32, giving a
total of 32°%, or 33 000 spins for a three-
dimensional lattice.

To calculate whether or not a spin
should be flipped, the probability p
given by the equation above is com-
pared with a random number between
0 and 1. If the random number is less
than p the spin is flipped, otherwise
not. Usually the random number gen-
eration is the most time consuming
part of the calculation. In this instance
I used a very fast, high-quality number
generator constructed® by Eric Stoll
and Scott Kirkpatrick. The only oper-
ation to be performed is a logical
“exclusive or” operation between two
previously calculated numbers (the
R250 method described in reference 2).

Usually home computers appear to
be rather slow. This is in part because
they use a Basic “interpreter,” which
translates each statement into the ma-
chine language consecutively as it is
being performed by the computer. If a
program line is run 10* times, it is
translated 10° times. A large computer
always has a compiler, which trans-
lates a program once and for all; the
cheap home computers now on the
market now have no compiler. How-
ever, by using “machine language,” one
can increase the speed by approximate-
ly a factor of 100. A machine language
is simply a series of two-digit numbers,
each representing a specific order for
the cpu microprocessor to carry out. It
is really not difficult to to use machine
language. I would like to stress that I
am by no means an expert in the field of
computing: I had no previous exper-
ience with machine language. How-
ever, it takes only a few hours to get
acquainted with the technique.” Had I
spent about $30 on an assembler pro-
gram, the task would have been even
simpler.

A Monte Carlo program (like all
other programs) consists of parts that
are performed only a few times and
parts that are performed many times
and thus require speed. The former
includes reading initial parameters,
calculating a table with e *F'T for
each temperature for the small number
of possible nearest-neighbor configura-
tions, and calculating 250 random
numbers to initiate the random num-
ber generator R250. The latter in-
cludes checking the near-neighbor con-
figurations, calculating random
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Spin configurations on a 16 « 16 x 16 lattice. Up spins and down spins are represented by two
different colors, respectively. The photo above shows the situation below 7. where a majority of
spins are pointing in one direction (“‘green”’). The photo below shows a disordered state slighly

above 7., where there are clusters of aligned spins

Figure 1

numbers and updating thermodynamic
averages, which are all done for every
single spin-flip attempt. Because it is
much simpler to write and change a
BASIC program, [ wrote only the latter
parts, which require speed, as a ma-
chine-language program; these are
then called from a slow Basic program.

The speed that can be obtained is
determined by the clock frequency,
which is 1.1 MHz for the Commodore
VIC20. The calculation of one Monte
Carlo step takes 150-250 clock pulses,
which gives a speed of between 4000
and 6000 Monte Carlo steps per second.
The clock frequency of a large comput-
er (such as the CDC 7600) is about 35
times higher, and the computer manip-
ulates words that are 4 to 8 times
longer. So in principle the larger
computer 1s 100 times faster, but in
practice it usually isn't because it uses
inefficient FORTRAN or similar pro-

grams. A very important factor is that
the microcomputer can be run precise-
ly when the need arises. With a larger
computer, there may be idle periods of
arbitrary length because of conflicts
with other users, maintenance and so
on, increasing the effective time needed
for computations.

Typically, my calculations involved
5000-20 000 Monte Carlo steps per spin
for each data point. Because the com-
puter is attached to a standard color tv,
color graphics are immediately avail-
able. Figure 1 shows photographs tak-
en directly from the TV screen of cross
sections of spin configurations on a
16 <16 16 lattice. “Up” spins and
“down" spins are represented by two
different colors. One can follow visual-
ly on the screen the growth of clusters
of aligned spins as the transition tem-
perature is approached from above.

Figure 2 shows the resulting graphs



of order parameter versus temperature
for different lattice sizes. The point
indicating the 7'=4.5 magnetization
for the N = 32 lattice represents 6 x 10®
Monte Carlo steps. The transition tem-
perature is identified as the inflection
point of the curve. For the lattice with
N =32 we find 7. is about 4.50 + 0.02,
which is in fair agreement with the best
estimate* from a high-temperature se-
ries expansion (7. = 4.511). Also, of
course, the magnetization curves agree
with those calculated using large com-
puters.” In addition to the magnetiza-
tion, the program was also used to
calculate the internal energy and the
specific heat versus temperature. It is
quite straightforward to extend the
program to perform more sophisticated
analyses of the Monte Carlo results
(such as the methods combining Monte
Carlo and renormalization-group argu-
ments, developed by Robert Swendsen®
and Kenneth Wilson, which require the
formation of block spins to calculate
critical indices), but these are beyond
the scope of the present article. The
important point is that the above basic
Monte Carlo calculation could in fact
be done swiftly and accurately.

Economics

The computer was running about a
week to generate the data I reported
above, and the total number of spin-flip
attempts was three billion! The cost of
the computer, including the cassette
recorder, was about $400. Assuming
that the computer is written off over
three years, the cost of one week’s
computations is $3 plus maybe $1 for
electricity, so the total cost is around $4
for 160 hours of cpu time.

What would be the cost of running
the same calculation on a large comput-
er (assuming that we do not belong to
the lucky few who have unlimited
access to one)? Typically, a computer
center charges something like $500 per
cpu hour. If we assume that a factor of
40 can be gained in speed, the job would
need around 4 hours cpu time at a cost
of maybe $2000. By using the small
computer, the cost has thus been re-
duced by a factor of 500! And this
reduction has been achieved without
compromising in any way the quality of
the calculation. )

Admittedly, the three-dimenmqnal
Ising model is particularly well-suited
for the small computer. Some very
ambitious Monte Carlo simulations (on
lattice gauge theories, for instance)
requiring huge amounts of floating-
point calculations cannot yet be carried
out in this way. On the other hand,
more typical simulations that form Lhe?
basis of up-to-date research projects
may need only a fraction of the process-
ing time of the example presented here,
and the considerations above apply.

Turning to problems outside statisti-

Software for the Apple

As physicists, we know that a complete
description of a physical process requires
first formulating the laws that govern the
process into a mathematical expression
and then solving the mathematical expres-
sion. The physical insight used to formu-
late the mathematical expression is often
lost in the purely mathematical task of
solving the expression. One such case in
point is wave mechanics. Schrodinger's
equation can be readily expressed as a
time-independent differential equation for
wave functions in an arbitrary potential,
whose normalizable solutions give the al-
lowed energy values and wave functions
for the potential under consideration.
Finding these normalizable solutions and
their associated energy eigenvalues is, as
a formal mathematical task, not trivial, but
also not particularly enlightening. How-
ever, with the advent of personal comput-
ers with speed and graphic capabilities,
differential equations such as the time-
independent Schrodinger equation can be
solved by numerical technigues. The
graphical display of a numerical integration
can also give new insight into the relation-
ship between the laws and the physical
processes the laws govern.

| programmed an Apple computer to
integrate Schrodinger's equation numeri-
cally for a variety of potentials and to
display graphically the evolving trial solu-
tion. The project started as an educational
tool for an introductory course in quantum
mechanics at Williams College. Once
completed, it was an easy task to give the
program additional potentials that | en-
countered in teaching advanced courses
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and in my research. To my surprise, the
program could even handle scattering
problems. After some fancy additions,
including a draw-your-own potential and a
set of recallable demonstrations, the pro-
gram was published under the name
“Schrodinger's Equation” by EduTech
(624 Commonwealth Ave., Newton Centre,
MA 02159).

The program numerically integrates the
time-independent Schrodinger equation
for a trial energy value and a set of initial
conditions supplied by the user. The
evolving wave function is displayed graphi-
cally, demonstrating visually whether or
not the trial energy and initial conditions
result in a normalizable solution. The user
modifies the trial energy value or initial
conditions until the solution is normaliza-
ble. This procedure results in a wave
function and energy eigenvalue for the
selected potential and provides insight into
what aspects of the potential and initial
conditions cause convergent solutions.

Shown in the figure are (a) the two
lowest-energy solutions to a double poten-
tial well, {(b) the n =20, /=9 and n =10,
/= 9 states of hydrogen, (¢) the n = 0 and
n =21 levels of a harmonic oscillator and
(d) a wave scattering off of a potential
barrier. | find this method of solving Schré-
dinger's equation using a personal com-
puter with graphics capabilities much more
exciting and rewarding than matching
boundary conditions or using the method
of Frobenius.

PetEr B. KRAMER
Cambridge Research Laboratory
Cambridge, Massachusetts
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cal mechanics, electronic-structure cal-
culations, as well as many other theo-
retical efforts to develop accurate
models of tiny regions of nature, re-
quire all the processing speed that a
modern large computer can provide
and can be performed only by the most
patient physicist on a home computer
at this point. Also, the nature of these
calculations is often such that the
speed mentioned above might increase
by a factor of around 5, reducing the
cost improvement correspondingly.
Of course there are also problems
involving ‘“real-time” processing of
large amounts of data (such as running
an acclerator) that cannot yet be per-
formed on the home computer. But the
bulk of the problems in physics are not
of this nature. As a reviewer for the
National Science Foundation, I some-
times encounter proposals seeking
funding for scientific computations to
be performed at university (or other)
computer centers. Most of these calcu-
lations could be performed on the
smallest computers available, at a frac-
tion of the cost. Some physicists, how-
ever, have unlimited access to large
computers, typically because they run
their jobs parasitically while more de-
manding jobs are being run at their
large research labs. Of course there is
no advantage for these groups to switch
to microcomputers, but they surely are
going to get strong competition. Apart
from these situations, any calculation
that can be done on a small computer
should be done on a small computer.

The future

Clearly, we are only in the beginning
of the microcomputer age. The micro-
computer has been around in huge
numbers only for a few months. The
real revolution lies slightly in the
future when we can have home comput-
ers powerful enough to save both time
and money. Already there are micro-
processors (such as the Motorola MC
68000) that can function as cpu's in 32-
bit computers with a clock frequency of
12 MHz. In principle, there is absolute-
ly no reason that a small computer
should be slower than a large one. In
fact, today it is the speed of light and
hence the physical size of the computer
that limits speed. Thus, the smallest
computers are eventually going to be
the fastest.

As we have ssen, the main reason
that a traditional computer cannot be
used efficiently is that all the data must
pass through a single bottleneck—the
cpu. A large computer is like a dino-
saur: a large body with a small brain.
Hence the cpu time is extremely expen-
sive because one has to pay a tremen-
dous overhead to finance peripheral
units, buildings and personnel. Thus
you pay $500 an hour to rent a $5 cpu.
However, computers are now being
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Order parameter versus temperature for the three-dimensional Ising model obtained by author
with Commodore computer. Each point represents at least 5000 Monte Carlo sweeps through

the lattice. The transition temperature was found to be 7. = 4.50 + 0.02.

built that allow for multiple processing,
so that calculations can be performed
simultaneously at different locations. I
see no reason that the same construc-
tion cannot be implemented in the $300
home computer. An extreme solution
would be to buy 100 home computers
and run them simultaneously, still
saving money.

Another interesting possibility is to
build a computer custom-made (“*hard
wired") for a specific problem. A group
of scientists at the University of Cali-
fornia, Santa Barbara, has in fact
constructed a computer dedicated sole-
ly to Monte Carlo simulations on the
three-dimensional Ising model (see the
article by Jorge E. Hirsch and Douglas
J. Scalapino, pHYSICS TODAY, May, page
44.) Information on the content of
neighboring cells is fed at several
positions on the lattice at the same
time. In this way they are able to carry
out 25x10° steps per second—far be-
yond the speed of the home computer.
However, such an approach appears
useful for only a relatively small num-
ber of well-defined problems, and much
effort is involved in planning and
building a computer for every such
problem. The whole computer must be
written off on a single project, whereas
the home computer can easily be pro-
grammed to perform other calcula-
tions.

In view of the fantastic developments

Figure 2

in recent months, it is very difficult to
extrapolate into the future. For me,
the greatest asset of the home comput-
er is that it makes me truly indepen-
dent of computer organizations, bur-
eaucracies and economic constraints,
giving me time to concentrate on my
scientific work. Surely, for most every-
day problems in physics, large-scale
efficient computer power will be avail-
able like water to the physicist in the
future!

R

I am grateful to several of my colleagues,
including O. Mouritsen, R. Swendsen, E.
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aspects on computations and physics.
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