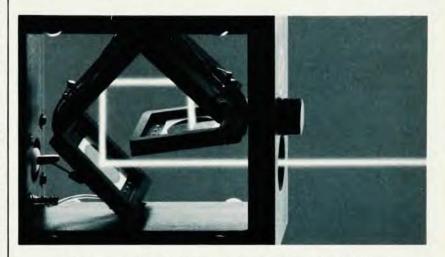
has extended short-wavelength spectroscopy well beyond the limits imposed by conventional sources of uv and soft x rays. Consequently, a single book describing the uses and techniques of high-resolution spectroscopy is a monumental task if it is to describe traditional spectroscopy and recent advances.

In this volume, J. Michael Hollas makes just such an attempt, covering the spectrum from microwaves to soft x rays. He includes information about many techniques, ranging from the obsolete Toronto mercury-arc source to the modern techniques of saturation spectroscopy. Similarly, he includes a wide variety of theoretical underpinnings: energy quantization, line-broadening mechanisms and group theory for polyatomic molecules. Unfortunately, by aiming to cover such a vast area, this book misses many important topics and only superficially touches others. For example, its treatment of molecular spectroscopy for the purpose of determining structure is much more complete than its sparse treatment of precision atomic spectroscopy. There is no mention of the measurements to detect parity violation or other fundamental effects. Similarly, there is a discussion of quantum beats spectroscopy, but no mention of separated oscillatory fields and only a brief discussion of multiphoton spectroscopies.

Hollas writes in a style that is easy to read, directed at "postgraduate students and teachers of spectroscopy," as he says in his preface. He tends to avoid acronyms and detailed references. However, the lack of references and the brevity of many of the discussions prevent this book from being a solid introduction to high-resolution spectroscopy. It does provide a significant overview, particularly of high-resolution molecular spectroscopy.

WILLIAM E. COOKE University of Southern California

Building Scientific Apparatus


J. H. Moore, C. C. Davis, M. A. Coplan 483 pp. Addison-Wesley, Reading, Mass., 1983. \$54.95

There are "how-to" books on every conceivable subject, from orchid growing to airplane construction. Yet experimental techniques are largely passed on by the apprentice system, aided by a number of specialized handbooks. That practice was fine in a simpler age, but now experimental techniques are becoming increasingly complex and individual scientists are finding they require more sophisticated cross-disciplinary skills. It is hard to imagine a single book that can encompass the full range of experimental techniques at a useful level of complex-

ity, but in 483 pages this marvelous text comes closer than any of which I am aware. I am sure that all or most of the information presented here is available elsewhere, but certainly nowhere in such an accessible fashion.

The first chapter, mechanical design, illustrates the strengths of the presentation. In less than 50 pages, the authors discuss in a clear, useful style topics ranging from the characteristics of machine tools (how round can one expect a drilled hole to be), to the

properties of materials, to mechanical drawing, to stress analysis, and even to such details as deciphering the strength code stamped on the top of bolts. This (and all other chapters) ends with a section of several pages containing not only a bibliography, but also a list of suppliers of materials (ceramics, adhesives, bearings) and equipment (welders) discussed in the chapter. The chapter on electronic design goes so far as to show 77 different manufacturers' trademarks

UDT BRINGS ABSOLUTE RADIOMETRIC STANDARDS DOWN TO EARTH AND INTO YOUR LAB.

At last, an easy-to-use radiometric reference for calibrating photo-detectors and for measuring laser power in the visible light range. Use it for research and development, for calibrating production standards and for system calibrations.

The QED-100 is an absolute standard developed in coordination with the National Bureau of Standards. Its responsivity depends only on wavelength and known physical constants:

 $R = \frac{\lambda}{1239.5}$

It gives you a simple straightline relationship between responsivity and wavelength. The QED-100 achieves its absolute reference status in two innovative steps. First, a spe-

cial inversion-layer silicon photodiode converts all absorbed light with essentially 100% quantum efficiency. Second, virtually all reflected light from the surface is captured by a network of photodiodes arranged in a retroreflective pattern. The

result is a totally efficient standard which does not depend upon auxiliary measurements for its accuracy.

Write or call for complete information. United Detector Technology, 12525 Chadron

Ave., Hawthorne, CA 90250. Telephone (213) 978-0516.

Circle number 52 on Reader Service Card

REVIEWS OF INFRARED AND MILLIMETER WAVES Volume 1

edited by Kenneth J. Button, Massachusetts Institute of Technology

CONTENTS: The quantum response of nonlinear tunnel junctions as detectors and mixers, *J. R. Tucker.* Mixing with SIS arrays, *M. J. Feldman.* and *S. Rudner.* Fast detector of discontinuous metal film for millimeter through optical frequency range, *S. Okamura.* et al. Microwave radiometry for measurement of water vapor, *D. C. Hogg.* et al. Far intrared metal mesh filters and Fabry—Perot interferometry *K. Sakai.* and *L. Genzel.* Magnetic resonances in Perovskite-type layer structures, *R. Geick.* and *K. Strobel.* The reflection of open ended circular waveguides application to nondestructive measurement of materials, *F. E. Gardiol.* et al. Index.

380 pp., illus., 1983

\$45.00

REVIEWS OF INFRARED AND MILLIMETER WAVES Volume 2

Optically Pumped Far Infrared Lasers

edited by Kenneth J. Button, and M. Inguscio and F. Strumia, Instituto di Fisica, Pisa, Italy

This is a compendium of the twenty most useful infrared, or submillimeter, lasers. Since it contains descriptions of fundamental principles and listings of fundamental physical data, this set of critical reviews will remain a standard reference for decades.

approx. 500 pp., illus., 1983

\$62.50

THE PHYSICS OF ACTINIDE COMPOUNDS

by Paul Erdős, University of Lausanne, Switzerland, and John M. Robinson, Indiana University – Purdue University at Fort Wayne

A plenary review of theoretical and experimental research concerning the physical properties of actinide compounds, this volume emphasizes low-temperature magnetic properties, highlighting the first-order phase transitions that have been discovered in a number of actinide compounds. The authors, leaders in the field, supply introductory and background information on experimental and theoretical techniques for the benefit of nonspecialists. Many diagrams, tables, and references are included, making this volume a comprehensive reference work. A volume in Physics of Solids and Liquids.

226 pp., illus., 1983

\$39.50

PRINCIPLES OF FLUORESCENCE SPECTROSCOPY

by Joseph R. Lakowicz, University of Maryland School of Medicine

Filling the need for a basic text and reference source on the subject, this volume discusses all basic phenomena and discloses the various biochemical applications. The presentation is kept as simple as practicable, and wherever extensive equations are used, a good deal of text is included to explain the origin and meaning of each expression. Topics covered here include energy transfer, solvent effects, excited state reactions, instrumentation, fluorescence polarization, lifetimes, and quenching.

510 pp., illus., 1983

550 pp., illus., 1983

\$32.50

A SOURCEBOOK OF TITANIUM ALLOY SUPERCONDUCTIVITY

by **E. W. Collings**, *Battelle Memorial Institute*, *Columbus*, *Ohio* E. W. Collings has assembled, condensed, and critically analyzed here a large body of literature from numerous sources, creating the first volume to deal systematically and exclusively with titanium alloys as superconductors. It constitutes a complete manual of historical, scientific, and technical information on binary and multicomponent superconducting alloys based on titanium. In it, particular emphasis has been placed on the titanium—niobium-based members of the family to which more than 90% of all present-day superconductors belong.

\$69.50

THIN FILM SOLAR CELLS

by Kasturi Lal Chopra, Indian Institute of Technology, New Delhi, and Suhit Ranjan Das, National Research Council, Canada

A comprehensive treatment of the physics and technology of various types of homo, hetero, barrier and liquid junction solar cells involving amorphous, polycrystalline, and epitaxial semiconductor thin films. The volume reviews basic solid-state physics of junction devices and provides detailed descriptions of thin film materials and associated preparation, measurement, and analysis techniques. Also included is a comparative analysis of the performance of various types of thin film solar cells.

624 pp., illus., 1983

\$75.00

THIN FILM DEVICE APPLICATIONS

by Kasturi Lal Chopra and Inderjeet Kaur, Indian Institute of Technology, New Delhi

This monograph presents a concise and coherent study of thin film device applications in such areas as optics, electro-optics, microelectronics, magnetics, quantum engineering, surface engineering, and thermal detection. Covering both academically interesting and commercially viable devices, this book should inspire the reader to investigate the vast and relatively unexplored field of microscience and the technology of low-dimensional thin film devices.

290 pp. + index, illus., 1983

\$42.50

ADAPTABILITY The Significance of Variability

The Significance of Variability from Molecule to Ecosystem

by Michael Conrad, Wayne State University

Unique in its classification of the mechanisms and modes of adaptability at all levels of biological organization, this book presents a framework for analyzing, handling, and describing the interrelations of adaptability processes. Dr. Conrad offers important new ideas about the functional significance of biological variability and develops new perspectives on the structure–function relation in biology and in the dynamics of the evolutionary process. Because the key to adaptability is variability, this book serves as a unique cross-disciplinary study of variability at different levels of the life process.

408 pp., illus., 1983

\$45 00

THEORY OF THE INHOMOGENEOUS ELECTRON GAS

edited by S. Lundqvist, Chalmers University of Technology, Göteborg, Sweden, and N. H. March, University of Oxford

Intended as an introduction to the theory of the inhomogeneous electron gas for students who have taken a basic course in quantum mechanics and who possess a working knowledge of statistical mechanics and an elementary background in solid state theory, this text treats both the theoretical foundation and its numerical consequences for atoms, molecules, and solids. Specific topics of interest explored include the origins of the Thomas—Fermi theory; general density—functional theory; density oscillations in nonuniform systems; applications of density—functional theory to atoms, molecules, and solids; and the density—functional approach to the electronic structure of metal surfaces and metal—adsorbate systems. A volume in Physics of Solids and Liquids.

410 pp., illus., 1983

\$55.00

PLENUM PUBLISHING CORPORATION

233 Spring Street New York, N.Y. 10013

Circle number 53 on Reader Service Card

as they are printed on components and gives addresses of the suppliers. All the chapters are profusely illustrated with hand-lettered line drawings of very good quality.

The shortcomings of this book, such as they are, are the inevitable ones associated with the bias of the authors. all of whom have research interests in various spectroscopies and a strong chemistry background. Thus, the section on optics is over 270 pages long and has over 100 pages of manufacuturers listings. The vacuum technology chapter, though, is only about 30 pages long and, while it has an excellent discussion of the basics, it ignores evaporation and sputtering-two of the major uses of vacuum technology. The manufacturers' list here is less than a page, not a generous representation for the wide range of equipment available. Similarly, the chapter on charged-particle optics includes sources, lenses, analyzers, and electron multipliers, but does not even mention electron microscopy. Certainly, the scanning electron microscope is beginning to become a familiar laboratory tool and should be discussed. On the other hand, the quality of the 145-page electronics section indicates that the authors had to sort this out for themselves and took care to pass this hard-won knowledge along. They even discuss grounding, shielding and pickup, topics all too often glossed over.

Anyone who has to build or buy scientific apparatus, especially in an unfamiliar field, will find this an invaluable reference.

RICHARD E. HOWARD Bell Telephone Laboratories

new books

Thermodynamics and Statistical Physics

Addendum to an Approach to Rheology through Multi-Variable Thermodynamics. H. H. Hull. 21 pp. Pittsburgh, Pa., 1982. \$4.00

Electricity, Magnetism and Fields

Theory of Electromagnetic Waves: A Coordinate-Free Approach. H. C. Chen. 449 pp. McGraw-Hill, New York, 1983. \$35.00. graduate text

Optics and Acoustics

Bauelemente der Optik: Taschenbuch für Konstrukteure. H. Naumann, G. Schröder. 599 pp. Hanser Verlag, Munich, 1983. DM 98

Radiometry and the Detection of Optical Radiation, R. W. Boyd. 254 pp. Wiley, New York, 1983. \$34.95. reference An Introduction to Optical Fibers. A. H. Cherin. 326 pp. McGraw-Hill, New York, 1983. \$34.95

Optical Fiber Communications. G. Keiser. 318 pp. McGraw-Hill, New York, 1983. \$35.00. reference

Pitch Determination of Speech Signals: Algorithms and Devices. W. Hess. 698 pp. Springer-Verlag, New York, 1983. \$37.00

The Acoustic Sense of Animals. W. C. Stebbins. 168 pp. Harvard U.P., Cambridge, Mass., 1983. \$16.50

Atomic, Molecular and Chemical Physics

Direct Nuclear Reactions. G. R. Satchler. 833 pp. Oxford U.P., New York, 1983. \$110.00. reference

Particles, Nuclei and High-Energy Physics

Electron Radial Wave Functions and Nuclear Beta-Decay. H. Behrens, W. Bühring. 626 pp. Oxford U.P., New York, 1982. \$98.00 advanced text and reference

Quantum Chromodynamics. An Introduction to the Theory of Quarks and

Offices in Geneva, Heidelberg, Oxford, Paris and Rome: representatives throughout the world.

Circle No. 54 for Immediate Need Circle No. 55 on Reader Service Card