
Quench echoes
In spite of their seemingly random motion, atoms in

computer-simulated glasses "remember" the time interval between
a pair of freezings, simplifying certain many-body calculations.

Sidney R. Nagel, Gary S. Grest and Aneesur Rahman

When we try to understand atomic
motion in amorphous solids, we face a
complicated problem in classical me-
chanics. What is the relationship
between the motion of one atom and
that of every other? Without a periodic
crystal lattice to simplify the calcula-
tions, we must look for other properties
that make things tractable. A pheno-
menon recently observed in computer
models of many-body systems may give
us such a simplification, at least in the
calculation of a number of dynamical
properties of glassy solids. This pheno-
menon, the "quench echo," appears as
a brief but dramatic drop in the tem-
perature of a theoretical solid some-
time after it has experienced two
abrupt quenches of its kinetic energy,
as we will see later in detail.

Techniques of computer simulation
have become increasingly important in
physics, and there are now a variety of
methods by which one can use them to
investigate the complex behavior of
many-body systems. Our intent here is
not to review the merits and weak-
nesses of the various methods, but
rather to focus on an example, the use
of quench echoes in molecular dynam-
ics, and see how this method applies to
the important many-body problem of
understanding the nature of the glassy
state.

Computer simulations based on
quench echoes are a powerful tool for
studying the dynamics of solids. In this
article we will describe the technique
and look at the three main areas in
which it has contributed so far: deter-
mining the density of states of normal
modes in solids, determining the indi-
vidual normal modes themselves and
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analyzing anharmonic behavior in so-
lids. Normal modes are important
because they are the elementary exci-
tations of a solid from which we can
calculate fundamental properties such
as specific heat and thermal conductiv-
ity. While quench echoes have already
shown themselves to be useful in isolat-
ing and studying these elementary
excitations in glassy systems, they ap-
pear also to have applications in the
study of such excitations in other com-
plex TV-body systems. As a consequence
of their ability to isolate an elementary
excitation, models using quench echoes
have uncovered at high frequency a
spatial localization of vibrational
modes, and a sudden change of regime
from localized to extended behavior
with decreasing frequency. (See figure
1.) They have also made it possible to
study, normal mode by normal mode,
the frequency shift caused by a change
in temperature or volume.

The computer model
The many-body problem in classical

mechanics is that of describing and
understanding collective motion in
complex systems of particles, and ulti-
mately relating the structure and dy-
namics of such systems to the interpar-
ticle forces. We know from elementary
mechanics that the two-body problem
reduces to a simple quadrature. The
three-body problem is quite another
matter, and has a long and venerable
history. When we change focus from a
few-body problem to an iV-body prob-
lem with TV about 1023, we enter the
realm of statistical mechanics. Com-
puters have added an extra dimension
to the science of statistical mechanics
through their ability to solve TV-body
problems for values of TV as high as 500
to several thousand.

The glassy state is an interesting TV-
body problem. We can think of a glass
as a solid without crystalline order, as a
homogeneous system with short-range
but no long-range order. For such a

system the usual methods of analysis
are not very useful, and a numerical
approach appears fruitful. In the fol-
lowing pages we will describe the
quench echo phenomenon and see how
it is used in molecular dynamics simu-
lations to elucidate elementary dyna-
mical excitations in glassy solids. It is a
matter of opinion as to whether this
sort of work should be considered
experimental or theoretical in nature.
We think it has elements of both.

In the method of molecular dynam-
ics,1 one integrates Newton's equations
of motion numerically. Given the ini-
tial positions and initial velocities of all
the particles, and the interparticle
potential through which they interact,
one calculates the new position and
velocity for each particle at a time A<
later (or earlier). For example, the
constant-acceleration approximation
gives for particle i,

r,(t + A£) = r,U) + v,{tW + V2a,(«(A«2

The acceleration is calculated from
postulated forces of interaction
between particle i and all the other
(TV— 1) particles. After applying this
algorithm to all the particles, one
simply repeats the process. (In practice
one uses a more efficient algorithm.)
After many such cycles, the computer
has calculated the trajectory for the
system over some relatively long "mac-
roscopic" time. In a simulation of
atomic motion, this "macroscopic" time
may be exceedingly short, on the order
of 10 ~9 seconds.

The system on which we will con-
centrate in this article is a theoretical
glass consisting of 500 particles in a
box with periodic boundary condi-
tions. That is, if a particle leaves one
side of the box, it comes back in on
the opposite face. Thus there are no
surfaces in our computer model. The
particles have hard-core radii a and
interact with one another via the sim-
plest realistic potential for solids, the
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Lennard-Jones potential

V(r) = 4e [(a/r)12 - (a/rf]

Here e is the depth of the potential, and
r is the separation between particles.

Because the system is classical, its
instantaneous kinetic temperature is
just proportional to the kinetic energy:

%kT =

Here the average is not over time, but
over the iV particles, each of mass m.
For argon, elk is 120 K, a is 3.4 A and
the unit of time r, given by aim/e)"2, is
about 10"12 sec. The integration algo-
rithm uses a time step t\t of O.Olr. It is
convenient to use dimensionless pa-
rameters for temperature and density:
T* = kT/e, andp* = (N/V)a3. The den-
sity p* for the experiments discussed in
this article is 0.95. At this density the
Lennard-Jones argon glass melts when
T* is 0.80. At the triple point of the
system T* is 0.70 and p' is 0.84. We
form the system by rapidly cooling the
liquid to a point where the particles do
not diffuse over the time scale of the
simulation.2 For simplicity we call this
frozen fluid a glass.

The thermal quench. The quench echo
occurs when we lower the temperature
in a particular way. We first quench
the system at a time denoted by t = 0,
that is, we stop all particles where they
are and release them with zero velocity,
thereby setting the kinetic energy and
therefore the temperature instanta-
neously to zero. However, because
each particle has potential energy, the
particles immediately begin to move
again, converting part of their poten-
tial energy back to kinetic energy. If
the system were given sufficient time
to return to equilibrium, its final tem-
perature would be approximately half
of its original value because the equi-
partition theorem is approximately

Localization of normal modes of vibration in
a 500-particle glass. From left to right, the
three frames in each row represent projec-
tions of the kinetic energy for a particular
normal mode onto the x-y, y-z and z-x planes.
Successive contours represent factor-of-two
decreases in the kinetic energy. White repre-
sents the highest kinetic energy, red the next
highest, and so on, down to black, which
represents the least kinetic energy. The top
row shows a highly localized normal mode in
the glass. The normal mode in the middle row
is of intermediate localization, and the normal
mode in the bottom row is extended. From top
to bottom, the normal modes have frequen-
cies CUT of 28.9, 26.2 and 23.1. (Figure created
by the authors with the help of Rudolph
Banovich, University of Chicago.) Figure 1

valid at such low temperatures. The
region on the left in figure 2a shows the
temperature as a function of time
during a period t, (45 time steps) after
one such quench. To lower the tem-
perature further, we quench the sys-
tem again at time tv In addition to the
expected lowering of temperature, this
quench produces quite dramatic re-
sults. Instead of the temperature be-
having simply as it did after the first
quench, as one might expect, it displays
the behavior seen on the right in figure
2a. An echo occurs at a time exactly t,
after the second quench as the tem-
perature suddenly drops and then
quickly recovers its equilibrium value.
There is no echo at time 2tt. This
behavior does not depend on the value
of t, as long as this time between
quenches is longer than some critical
time. Figure 2b shows how the depth of
the echo depends on 1/t,; as the inter-
val between the two quenches in-
creases, the depth of the echo increases
from zero to some maximum value and
then decays at much longer times. As

we shall see, the rate at which the echo
decays depends on the starting tem-
perature. For very low temperatures
the echo should not decay at all, and no
matter how long one waits to make the
second quench, the echo should appear.

What happens if we quench the
system a third time, at a time t2 after
the second quench? (Our convention
throughout is that after each quench
we start the clock over again.) Figure
2c shows the results. As we saw before,
we find an echo at time t, after the
third quench. But now we also find an
echo at time t2, and two new smaller
echoes at times \t, — t2\ and t, + t2.

Simple descriptions
We can explain the cause of these

echoes with a very simple model.3 Let
us start by looking at what is happen-
ing in equilibrium before the first
quench. The motion of the atoms is
most easily analyzed in terms of the
normal modes of vibration of the 500-
particle solid. Each normal mode has a
characteristic frequency. If the system
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is harmonic, the normal modes do not
interact, or scatter from one another,
and each normal mode contributes the
same average amount to the total
kinetic energy. Figure 3a shows this
situation schematically. Each point
represents a different mode of vibra-
tion of the 500 particles moving in an
effective potential well represented by
the parabolic solid line. For simplicity
we have plotted all the modes in the
same well, but we assume that each
mode has a different frequency of
oscillation. (Of course, in reality each
mode moves in its own separate poten-
tial well.)

The quench at time zero forces all the
modes to move vertically downward in
the well because they lose all kinetic
energy while their positions are left
unchanged. At the end of this first
quench all of the oscillators are pressed
against the side of the well as shown in
figure 3b. Subsequently, all the parti-
cles move toward the center of the well.
Let us examine one small segment of
the wall containing many modes with
different frequencies. The same argu-
ment will hold for the rest of the wall.
Those modes that have a low frequency
move very slowly in this picture, and do
not reach their classical turning points
in time t}. These are represented by
the green point in figure 3c. Those
modes that have a high frequency,
shown in blue, move very quickly, and
in time «, reach their classical turning
points and come part of the way back.
Finally there are those modes, shown

in red, that have just the right frequen-
cy such that in time i, they just reach
their classical turning points.

Now we quench the system for a
second time. All the modes give up
their kinetic energy and again drop
vertically in the well. Thus the
"green" modes and the "blue" modes
lose a considerable amount of their
total energy, whereas the "red" modes
lose no energy at all, because they have
no kinetic energy at the time of the
quench. The kinetic energy, and there-
fore the temperature, becomes weight-
ed by those modes that have the most
total energy. After the second quench,
those are the "red" oscillators. If we
now watch what happens to the tem-
perature of the system after the second
quench, we see that at time t, the "red"
oscillators have simply retraced their
steps and are at rest at the side of the
well, as figure 3d indicates. There they
contribute nothing to the total tem-
perature. The "blue" and "green"
modes continue to move with the same
frequencies as before, because in a
harmonic well, the period of oscillation
is independent of amplitude. Thus at
time tl they do contribute a small
amount to the kinetic energy, so the
temperature does not go completely to
zero. However, because it is the "red"
oscillators that weight the temperature
the most, the disappearance of their
contribution causes a dip in the tem-
perature, creating the observed echo.

This echo behavior does not depend
on the solid being a glass. The essential

requirement is that normal modes exist
with a wide range of frequencies. This
requirement is met in both glasses and
crystals. The normal modes exist with
frequencies from zero—the sound
modes—up to the highest allowed fre-
quency—usually near the Debye fre-
quency &)D. It is the fact that there is a
highest frequency normal mode in the
solid that accounts for the absence of an
echo when the time between quenches
is too small.

Metasimulation and lab demo. We can
put this description into much more
concrete terms by simply writing out
the temperature as a function of time
for a harmonic system both before and
after each quench. The box on page 28
shows the relevant equations. By ex-
amining these equations we can under-
stand in detail the behavior described
so far. In particular, we see from
equations 2 and 3 why there is no echo
at time 2tx after a series of two
quenches, and from equation 4 why
there are echoes at times \tx — t2\ and
Uj + t2) after a series of three quenches.

To show that this is indeed the
correct explanation for the echo pheno-
menon, we can use equation 2 and
assume a density of states that is
similar to what we have in our Len-
nard-Jones glass. Thus, in effect, we
are doing a simulation of our simula-
tion! The deep echo in this "metasimu-
lation" (figure 4) is very similar to that
seen in the computer "data" (figure 2a).
We can also use this method to calcu-
late the depth of the echo as a function
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Model to explain quench echo phenomena. Each point represents a
different mode of vibration of 500 particles that make up a solid. Each
mode has its own frequency of oscillation; for simplicity, all modes

* - Spontaneous temperature minimum

appear here in the same effective potential well, represented by a
parabola. The second quench selects modes with period r, (red).
Modes of other frequencies (blue and green) lose energy. Figure 3

of the time tx between quenches. The
result does show structure similar to
that in figure 2b, except for one charac-
teristic. As the time between quenches
increases, the depth of echo does not
decay but remains constant. We will
get back to this point later when we
discuss the effect of anharmonicity on
the echo. We may also ask what
contributes to the width of the echo.
The width is simply determined by the
highest-frequency normal mode. If we
define St as \t — tx\, then we can see
from equation 3 that when St > TT/COD

the echo starts to disappear as some
modes no longer contribute to it. Stud-
ies of samples of various sizes show that
the width does not depend on the
number of particles in the sample.

One can perform a very simple exper-
iment in an undergraduate mechanics
laboratory to show the existence of the
echo and demonstrate that it does not
depend on a Maxwell's Demon for its
production. With the suggestions and
assistance of David Hwang, John Car-
ini and Shobo Bhattacharya, we have
had some success with this experiment.
We model a one-dimensional solid by
placing on an air-track a row of masses
connected by springs, as shown in
figure 5. When the air is turned on, the
masses move along the track without
friction. However, when the air is
turned off, the masses immediately
stop moving because of friction with
the track. Turning off the air thus
corresponds to a quench, because it
removes the kinetic energy while leav-
ing the positions of the masses un-
changed. (The masses stop moving in a
small fraction of a period of oscillation.)
The experiment is as follows: We start
the masses moving randomly, and then
turn off the air. This is the first
quench. We then turn on the air again
and wait a time t,. Turning off the air
again corresponds to the second

quench. When we turn on the air again
we watch the masses very carefully,
and at a time tx after the last quench we
see that they all slow down for a
moment and then speed up again. The
best way to see this echo is to make a
movie and show it in slow motion. Of
course, one must be sure to watch for a
dip in the total kinetic energy of the
system and not just the slowing of a few
masses.

It is interesting to note that there are
also "heat echoes," dramatic increases
in temperature after two abrupt heat
pulses. However, because a heat pulse
adds energy to all modes, these echoes
are more difficult to observe. If we
start at very low temperatures
(!T*<10~6) and suddenly increase the
velocity of each atom by a factor of 103

at two successive times £, steps apart,
then the temperature T* shows a broad
maximum at a time tx following the
second pulse. However, to observe this
heat echo we have to apply large heat
pulses and start at very low tempera-
tures, so as not to vaporize the system.
Because of these limitations, heat ech-
oes turn out to be less useful than
quench echoes in studying the proper-
ties of the system.

The quench echo can be developed
into a powerful technique to study the
dynamic behavior of solids using com-
puter simulations. This has occurred
in three main areas so far.

Density of states. The first of these is
the determination of the density of
states LKco) of a solid's normal modes.
There are two different ways of doing
this. Clearly the depth of the echo
appearing at time t, should be related
to the number of modes with frequency
oj = n/tl. If we quench the system
many times with the same interval tl
between quenches, the subsequent be-
havior of the temperature will tell us
how many modes have that frequency.

This is a long, involved process. It
turns out that there are better ways of
determining the density of states, one
of which also uses the quenching pro-
cess.4 If we look at figure 2a—the time
dependence of the temperature after
one quench—we see that the curve has
some structure that we have neglected
up to now. This structure contains
information about the density of states.
From equation 1 in the box, we see that

T*(t) = rx<o)AX dco

We can solve this for the density of
states by taking the Fourier transform
of the temperature T*(t). Thus, in the
case of the harmonic system, the func-
tion T*(t) contains the same informa-
tion as the velocity autocorrelation
function.

Anharmonic behavior. The second use
to which one may put these echo
techniques is in analyzing a solid's
anharmonic behavior. There are at
least three different ways of doing this.
• As we saw in figure 2b, as the time tx
between quenches become large, the
depth of the echo decays. However, as
we mentioned earlier, if we assume a
harmonic system, choose an appropri-
ate density of states and use equation 3,
we find that the depth of echo does not
decay, but approaches a constant at
large times. We observe a decay of the
echo because our glass is not perfectly
harmonic but has considerable anhar-
monicity in its motion even at low
temperatures. Looking at equation 3,
we see that because the sum is over
many different frequencies, all the
terms but two average to zero when the
times t and tx are large. The terms that
survive leave us with the following
expression for the temperature at long
times

T*(n~2,(A,'-/4)[l - % cos co,(t~ «,)]
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The depth of the echo should therefore
approach a constant value in the har-
monic system because when t is <,, the
temperature is one-half of its average
value, the average value of the last
term being zero. By observing the
dependence of the echo depth on time,
one can determine the strength of the
anharmonic forces that give rise to
interactions between normal modes,
making them lose phase coherence
with respect to one another.
• Another way to analyze anharmonic
behavior is to monitor the temperature
after three quenches.15 In a harmonic
system, if one quenches at time 0, at
time tx after that, and at time t2 after
that, the subsequent behavior of the
system should be identical to that of a
system quenched in inverted order,
that is, at time 0, at time t2 after that,
and at time tx after that. We can
perform both computer experiments
and compare the results. If we start
with the glass at very low temperature,
say T* = 0.001, then we indeed find
identical behavior in the two sequences
of quenches. However, when we raise
the temperature, we quickly begin to
see significant differences between the
two temperature curves. These differ-
ences show how the anharmonicity in
the motion increases with tempera-
ture. The sequence of frames in figure
6 shows the appearance of these differ-
ences in a Lennard-Jones glass as the
initial temperature increases. Inter-
estingly, at the highest temperature
the system is actually a liquid and it is
still possible to see a weak echo.
• A third way of detecting anharmonic
behavior is to measure the decay of
what is called the "stimulated" echo.
This echo is created by quenching the
system at time 0 and again at time <,.
We then wait a variable length of time
t2 and quench once again. The stimu-
lated echo appears at a time i, after
this last quench. The echo at time <, in
figure 2c is thus a simulated echo. We

20 40
TIME (units of At)

Metasimulation. This plot of temperature ver-
sus time is the result of using a simple
equation (equation 2 in the box below) and a
realistic density of states to simulate the
quench echo phenomenon, which itself is
seen in simulations of solids. The interval
between quenches is 65Af. Figure 4

can measure the depth of this echo as a
function of the time we waited, t2. The
echo decays with this waiting time
according to the strength of the anhar-
monic interaction between modes. In a
rubidium glass, the echo decays much
more slowly with waiting time than it
does in a Lennard-Jones glass, indicat-
ing that a harmonic approximation
such as the one in the box below gives a
more accurate description of the for-
mer than it does of the latter. This is
consistent with the experimental fact6
that Lennard-Jones liquids, such as
liquid argon, do not support propagat-
ing sound modes out to large wavevec-
tors, whereas liquid rubidium does.

Individual normal modes. The final use
that we will describe here for quench
echos is to obtain the individual normal
modes themselves. The process7 is very

simple. If we quench the system at
time 0 and again at time t,, those modes
having frequency o = mrltx, where n is
an integer, survive best. If we quench
the temperature again at a time tt after
the last quench, the predominance of
those same frequencies gets even more
pronounced. If we now repeat the
quenches many times, each separated
by the same interval tx (or some inte-
gral multiple of it) the system eventual-
ly begins to have only one frequency or
its harmonics in its motion; it is quite
easy to quench out all of the harmonics.
Neglecting degeneracies, this leaves
only one normal mode oscillating in the
sample. This method of repeated
quenches becomes useful when we are
dealing with a very large system with
long-range interactions. Normally, to
obtain the normal modes one would
simply diagonalize the dynamical ma-
trix.8 In practice, however, this be-
comes very difficult for large systems
because the size of the matrix one can
diagonalize is severely limited by com-
puter storage capacity. Thus the
quench-echo technique for finding nor-
mal modes—the eigenfunctions of the
dynamical matrix—becomes very use-
ful for large samples. By simply vary-
ing the time tx between quenches one
selects normal modes with different
frequencies, a process that requires less
computer storage than does matrix
diagonalization.

Let us look now in detail at the use of
quench echoes in determining the nor-
mal-mode structure in a Lennard-
Jones glass. There are two problems
we would like to discuss. The first is
the question of the spatial extent of the
modes. In the same sense that elec-
trons can be localized in a disordered
medium, phonons can also have a
critical frequency dividing localized
from extended states. The question of
localized states has played a fundamen-
tal role in amorphous semiconductors,
where the character of the electronic

Harmonic approximation
Before the first quench:

V{t)= ^A,'2 sin2(a), t + <#,), where A,' and <t>, are random.

After the first quench but before the second quench:

r(t)= y A,2sm2{o,f) (1)

After the second quench but before the third quench:

= X ( / 4 ' 2 / 4 ) [ 1 + c o s 2 w ' ' i - c o s 2&).'

- V2cos 2<u,(/ + /,) - V2cos 2(o,(t - t,)]

(2)

(3)

After the third quench:

= ^ (>4,2/2)[cos2(ul/1 + cos2w,r2 + V2co

+ V2cos2ai,(t, — y — 1 ] sin2w,f

After many (A/+ 1) equally spaced quenches:

t2)

(4)
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kinetic energy correlation function:

hir) = £ v2v* Sir - r - ru)

Masses and springs. One can observe quench echoes in a simple airtrack experiment.
Quenches are carried out by turning off the air abruptly, which stops the masses within a small
fraction of a period. This deprives them of their kinetic energy but not their potential energy.
Some time after a pair of such quenches there is a brief spontaneous drop in the kinetic energy.
The waiting time for this "echo" is equal to the time between the two quenches. (Photograph
courtesy of Daedalon Corporation, Salem, Massachusetts.) Figure 5

state determines the transport proper-
ties. (See Jan Tauc's article on amor-
phous semiconductors, PHYSICS TODAY,
October 1976, page 23.) We would like
to study the character of the phonon
states. The second problem is to deter-
mine the dispersion curve for the nor-
mal modes over their entire frequency
range.

Localization of modes

We would expect the highest-fre-
quency modes to be the most localized,
just as in the case of electrons, where it
is the band tails that have localized
states and the band center that has
extended states. In the case of phon-
ons, it is only the high-frequency modes
that become localized; modes near
a = 0 correspond to sound waves,
which are the very last modes to be
localized. We again expect a localiza-
tion threshold, marking the boundary
between extended and localized states.

The phonons in a glass are a particu-
larily revealing system to study, not
only because we can analyze the fre-
quency dependence of localization in
the same way that we analyze the
energy dependence of localization with
electrons, but because we can also add
interactions between normal modes

and study what happens in a strongly
interacting system. We can observe
the effect of interactions by simply
increasing a mode's amplitude of oscil-
lation. At low amplitudes the mode is
in a harmonic regime and does not
interact. At high amplitudes it does
interact with other modes because of
the anharmonic terms in the potential.
In this case we are actually studying an
interacting many-body system. This
effect of amplitude variations gives us
an extra degree of freedom in phonon
simulations that we do not normally
find in simulations of electronic sys-
tems.

By asking the computer the ampli-
tude and polarization of each particle
in each normal mode, we find out which
modes are localized and which are
extended.7 There are two particularly
interesting quantities that we can cal-
culate to help distinguish these two
behaviors. The first is the inverse
participation ratio, <y4>/<D2>2. When
the oscillations extend throughout the
system, this quantity has a value of
order unity, whereas when the oscilla-
tions are localized, it has a larger value
and is proportional to the number of
particles participating in the mode.
The other quantity of interest is the

Here rtJ is the distance between parti-
cles i andj. For localized modes, if two
particles are far apart, then at most
only one of them can participate
strongly in the mode and thus have a
large kinetic energy. Hence the pro-
duct v2v2 is small for large r and the
correlation function hir) falls off rapid-
ly at large r. In an extended state, on
the other hand, two particles separated
by a large distance can both contribute
to the motion. Thus the correlation
hir) does not decay for extended modes.

Figure 7a shows the behavior of the
correlation function for two modes, one
highly localized and one extended. The
function hir) for the extended mode
does not decay over the extent of our
sample, whereas for the localized mode
it decays by three orders of magnitude
in only four interatomic distances.
Figure 7b shows the behavior of the
inverse participation ratio as a func-
tion of frequency. The slope of the
kinetic energy correlation function
shows a similar frequency dependence.
Figure 7c shows the density of states
D(co) for this system. At high COT, that
is, for COT above 24.5, the modes are all
clearly localized. Below that frequency
they are all extended. This shows that
there is a threshold between the local-
ized and extended modes.
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quenches. These temperature-versus-time
curves begin after three quenches separated
by times f, and t2. For the dotted curves, r, is
3(W and tz is 45AA For the dashed curves,
these times are interchanged. The dotted
curve is displaced vertically to make it easier
to see. The initial temperatures kT/e are 0.11
in a, 0.46 in b and 1.2 in c. Figure 6
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Experiment. An obvious question is:
How can one determine experimental-
ly whether a mode is localized or
extended? One might consider looking
at the "dynamic structure factor" de-
rived from inelastic neutron scattering
experiments. However, as we shall see
when we discuss the dynamic structure
factor for all the modes in a glass, this
quantity is completely insensitive to a
mode's degree of extension.

Another method one might use to
look for the difference between ex-
tended and localized modes is to study
their anharmonic behavior. One com-
mon way9 of characterizing the anhar-
monicity of a mode is to measure its
"Griineisen parameter." This param-
eter, too, turns out not to be a good
measure of localization. Let us never-
theless look at how it works, because
later it will be instructive to see exactly
why it is not a good measure of localiza-
tion. The Griineisen parameter y, is
denned as d (lnm, )/d (In V), where to, is
the frequency of the ith normal mode,
and V is the volume of the system. For
a perfectly harmonic system, the fre-
quency of a mode is independent of the
volume, so the Griineisen parameter is
zero. We can measure a mode's Griin-
eisen parameter in our simulations by
changing the number density of parti-
cles and noting the resulting change in
the mode's frequency of oscillation in
the sample. For reasons we will see,
calculations of the Griineisen param-
eter for many modes, both localized and
extended, show no change as one moves

50-

22 24 26 28
FREQUENCY (units of r ')

Correlation,
participation and
density of states, (a)
Plot of the kinetic
energy-kinetic energy
correlation as a
function of distance,
for an extended mode
with a>t = 21.3 (black)
and for a localized
mode with <ot= 28.9
(color), (b) Inverse
participation ratios as a
function of frequency
for two 500-particle
glasses (open and
closed circles) with a
density p" of 0.95. (c)
The density of states
for the system in b.
Figure 7

across the localization threshold.
One can also measure the anharmon-

icity in a mode by observing how the
mode's frequency shifts with the ampli-
tude of vibration. In a harmonic mode
it does not shift at all. We can measure
this frequency shift in our simulation
as well. The result is that for frequen-
cies below the localization threshold,
d(ior)/dT* is very small, where T* is
now the temperature, or amplitude, of
the particular mode we are studying.
Above the threshold, however, this
measure of anharmonicity grows rapid-
ly with increasing frequency. There
seems to be a slight contradiction here.
Whereas the anharmonicity as mea-
sured by the Griineisen parameter does
not show a difference between localized
and extended modes, the anharmoni-
city as measured by A(O>T)/AT* does.
We can make a very simple model that
indicates why this difference might
appear. In the case of d(a>T)/dT*, we
can argue as follows. If two modes, one
localized and one extended, are close in
frequency and have the same amount
of kinetic energy (which is to be expect-
ed because fuo would be almost the
same for both), the localized mode will
have much more kinetic energy in each
of its atoms. Because these atoms will
then have a much larger amplitude of
vibration, they will explore the anhar-
monic parts of the potential to a greater
extent than will the atoms in the
extended mode. Thus, the frequency of
a localized mode will be much more
sensitive to the mode's total energy
than will the frequency of an extended
mode. This argument does not apply to
the case of the Griineisen parameter.

As a final observation on the differ-
ence between localized and extended
normal modes in glass, let us see how
the positions of the atoms change with
temperature. When a mode is excited
with a low amplitude of vibration, each
atom oscillates about some equilibrium
position. As the level of excitation
increases, the atoms not only move
with greater amplitude about their

central positions, but the central posi-
tions themselves move. The root mean
square drift is proportional to the
temperature. This motion of atoms is
often not as significant in simple crys-
tals where the high degree of symmetry
confines the atoms to vibrate about
fixed symmetry positions. A glass has
no such symmetry restrictions, so the
drift is present in all the modes. As in
the case of the frequency shift with
amplitude, the effect is much larger for
localized than for extended modes, and
this is another physical manifestation
of the difference between extended and
localized states.

Dispersion curves
The dynamic structure factor S(k,o))

for the vibrational modes in a glass is
the space and time Fourier transform
of the correlation function that de-
scribes the spatial and temporal fluctu-
ations of density in the system. We can
calculate this factor and use it to
analyze longitudinal excitations, which
one can measure through inelastic
neutron scattering; we can do an analo-
gous calculation for the transverse
excitations.10"12 The generalization of
the structure factor to transverse
modes, C, (k,a>), while not directly mea-
surable, has been valuable in the study
of liquids.

Figure 8b shows11 the function
/ji (k,co), for eight normal modes of a 250-
particle glass, where fl{ (k,m) is the one-
phonon part of the dynamic-structure
factor S(k,io) to within some smoothly
varying factors. For a mode of frequen-
cy a>, this function is given by

Here P,"1, the polarization vector, is
the maximum displacement of the ith
atom vibrating in the mode, and r, is
the position of the atom. The brackets
indicate that the quantity is averaged
over all wavevectors k of a given
magnitude.

We see that there are well-defined
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peaks in the one-phonon part of the
dynamic-structure factor for both very-
low- and very-high-frequency modes.
For the modes with lowest nonzero
frequency, which correspond to sound
waves, there are two regions of interest
in the wavevector k. When k is small,
as with the mode giving rise to the plot
in the first frame of figure 8b, fl{(k,co)
decreases monotonically with increas-
ing wavenumber, and we do not see the
\ov/-k part of the peak that corresponds
to sound waves. However, for the same
mode {COT = 1.3) there is also a well-
defined broad peak near a wavevector k
of magnitude 7cr~1. This value of the
wavevector corresponds to the first
peak in the static structure factor. In a
crystal, for wavevector k near the first
reciprocal lattice vector, one would get
a peak at low frequency to which this
peak at ka = 7 corresponds. At higher
frequency, when COT is near 10, the first
peak—the one corresponding to sound
waves—appears fully and is quite
sharp. For yet higher frequency, this
peak in /j| (k,co) becomes quite broad in
wavevector. For this reason, large
wavevectors are not considered to be
"good" eigenvectors in a glass. This
can be seen when COT is about 14, and
the two peaks are both small and ill-
defined. The surprising fact is that as
the frequency increases further, the
peaks do not become broader in k, but
become better defined and quite clear
for the highest-frequency modes, some
of which are highly localized in space.
It is very remarkable that there is so
much structure to be seen in S(k,co) for
a glass even in the region away from
wavevector zero.

Studies10" of transverse excitations
in glasses show that at low frequencies
the transverse dynamic structure fac-
tor C, ik,co) has a pronounced structure
at small wavevectors. As the frequency
increases, the structure broadens, and
for values of COT near 17, it is almost
completely gone. However, at higher
frequencies, CL(k,co) again begins to
peak more clearly, even though these
are highly localized states. There is
one very clear difference between the
behavior of transverse and longitudi-
nal modes. For the longitudinal excita-
tions, there are always multiple peaks
for each normal mode, although as we
saw, the peaks become indistinct when
COT is near 12. However, the transverse
excitations show only one clear peak
for most modes. Only at high frequen-
cies, when COT exceeds 23, does a second,
very broad peak begin to emerge above
the background at higher wavevector.

From the type of data shown in
figure 8b, one can construct a disper-
sion curve for the normal modes. Fig-
ure 8a shows the result of a plot of the
frequency against the wavevectors for
which the function f (k,co) has its first
two maximum values. There is a re-
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exposure time of each frame and the time interval
between individual frames. It's all done with a series of
plug-in modules. Select a streak camera module and you
can choose variable writing rates from 5 millimeters per
millisecond to 2500 millimeters per microsecond. Decide
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markably deep minimum in the disper-
sion curve near the point where ka is 7,
which is the wavevector for which the
static structure factor has its first
sharp maximum. Early calculations13

for one-dimensional models indicated
the existence of such a structure. A
recent calculation14 using an average
dynamical matrix has reproduced
these results qualitatively.

The results for the excitations in a
glass bear a striking resemblance to
what one finds for a polycrystalline
material. In particular, the dispersion
curve for longitudinal excitations
shows the same overall structure, with
a minimum occurring near the peak in
the static-structure factor for a glass, or
near the first reciprocal lattice vector
for a polycrystal. The shapes of the
curves for/j, (k,co) also show similarities.
The longitudinal sound peak gets
broader with increasing frequency in
both the glass and the polycrystal. In
the region where air is near 12, the
valley between the peaks has begun to
fill up in the polycrystalline sample,
corresponding to the lack of structure
seen in the glass in the same frequency
range. In the transverse modes, simi-
larities still exist between the glass and
the polycrystal, but they are less dra-
matic. The velocity of transverse
sound in the glass is approximately
20% smaller than in the crystal. Most
unexpected is that in the polycrystal
the transverse dispersion curve does
show signs of a zone boundary and of a
repeated zone scheme, whereas in the
glass there is no sign of the transverse
modes having a second peak with
intensity significantly above the back-
ground near a wavevector of magni-
tude 7a~\

J. Hafner of the Institute for Theo-
retical Physics in Vienna, Austria,
uses15 a simple model to argue that the
structure that appears in fr(k,a>) near
the point where ka = 7 for low-frequen-
cy excitations is due to a process
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Dispersion and dynamic structure, (a) The
dispersion curve for longitudinal excitations,
(b) The one-phonon part of the dynamic
structure factor is plotted here as a function of
momentum, for eight normal modes of a 250-
particle glass. Figure 8

analogous to what is called Umklapp
scattering9 in crystalline solids. The
first sharp maximum in the static
structure factor of the glass acts like a
smeared-out reciprocal lattice vector in
a crystal. He suggests that this "dif-
fuse Umklapp scattering" of low-wave-
vector transverse excitations contrib-
utes nearly all of the peak's intensity at
high wavevectors such as 7a~ \ Models
using quench echoes verify this predic-
tion.

Computer simulations have been
able to provide much insight into the
static and dynamic properties of
glasses. Quench echoes represent one
more tool at our disposal for studying
the behavior of this important many-
body problem. Our final objective, of
course, is to understand the nature of
all the elementary excitations in an
amorphous system. The size of current
computers limits us to relatively small
samples. With computers continuing
to grow in speed and storage capacity,
we will soon be able to study the truly
low-frequency excitations in glasses.
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