letters

Future of plasma space physics

The June issue describes much-needed funding increases in NASA's FY84 budget, particularly for physics and astronomy programs (page 43). These welcome increases will alleviate problems in a number of science programs.

Unfortunately, the budget category of physics and astronomy does not convey the entire story about NASA's support of physics research. The purpose of this letter is to alert your readers to a situation that threatens research in space plasma physics. The increasing precision of measurements. numerical modeling, and theory applied to space plasma problems have made the study of solar-system plasmas an important motivation and experimental arena for basic plasma-physics research. Moreover, the solar system is the primary laboratory in which certain astrophysical processes of great generality can be studied in situ. For these reasons, we believe our letter should be of interest to physicists and astrophysicists.

Because of managerial changes within NASA in the last year, the FY84 budget for physics and astronomy no longer covers space plasma physics, which had been an important element of the former NASA Division of Solar-Terrestrial Research. This NASA Division was abolished for nonscientific reasons. Its principal program elements, including solar physics, heliosphere physics, and space plasma physics (including the Earth's magnetosphere and ionosphere) were split between the Earth Science and Applications Division and the Astrophysics Division. The Physics and Astronomy budget line item applies totally to the Astrophysics Division at this time. Thus NASA's once carefully coordinated research in solar-terrestrial physics has virtually disappeared as an explicit organizational element. Space plasma physics, placed in an applications division, is no longer considered (for the first time since the beginnings of the US space program) a part of the physics and astronomy budget line for research support, including new missions and research and analysis.

NASA has not yet fully addressed the problems that the current organizational structure creates for space plasma physics and solar-terrestrial research, despite the fact that several National Academy studies conducted by the Space Science Board, the Geophysics Research Board, and the Polar Research Board have all emphasized the fundamental importance and unity of the subject. Further, a Committee of the Space Science Board made specific recommendations for a cost-effective coordinated program for the 1980s. These recommendations are being essentially ignored in NASA planning because solar-terrestrial physics has disappeared as an organizational entity. The Space Science Board expressed its concern to NASA about this problem in February 1983.

We view with considerable alarm the future of solar and space physics research in the nation. We believe that this area of research is diminishing ever more rapidly at the same time that NASA's overall budget, including physics and astronomy, is increasing. This trend will have adverse repercussions on other areas of science because, as stated in the Space Science Board report, Space Plasma Physics, this research area is "an important branch of science, concerned with problems of true intellectual significance that may be studied effectively in space and whose importance extends to laboratory physics as well as large-scale astrophysics." Will the US no longer be a participant in, to say nothing of being a leader in, solar-system plasma-physics research? Is this the direction that the nation wishes its space agency to take? Louis J. Lanzerotti

Bell Laboratories

Murray Hill, New Jersey

(plus 18 other physicists associated

7/83 with universities or industry)

Senior positions for women

The enhancement of physics faculty "by the addition of talented and accomplished senior women as faculty members" was advocated by Ralph Simmons in the March 1982 issue (page 120). In response, Janett Trubatch

BNC's popular Model 8010 Pulse Generator offers you no less than 8 modes of operation for only \$840.

Here they are:

 Frequency Source or Oscillator that is continuously variable from 1 Hz to 50 MHz.

Delay Generator from 25 ns through 1 sec.

 Double Pulser producing pulse pairs with continuously variable separation.

 Gate or Width Generator from 20 ns through 1 sec.

Single Pulser with pushbutton initiation of a single pulse or single pulse pair.

 Gateable Oscillator with pulse burst and clock synchronizing capabilities.

Triggerable Pulse Source which produces pulses when signalled.

 Four-Output Pulser with ECL, NIM, Positive normal, and Positive complementary stimulus capabilities.

With the Model 8010 on your bench, you'll save both set-up and test time. And you may very well avoid the need to design additional circuitry or buy more equipment. Request our 8010 specification sheet or better yet call John Yee.

Berkeley Nucleonics Corporation 1198 Tenth Street Berkeley, CA 94710 Phone (415) 527-1121

Circle number 10 on Reader Service Card

BETTER BEST-SELLER.

Keithley combined the best features of our two most popular DMM's in the new Model 130A — then doubled the warranty and cal cycle.

We took the 130's economy and the 131's accuracy, proven in more than 100,000 units, and improved on them. The result is a precise, rugged DMM for your lab, bench, or tool kit.

0.25% basic DCV accuracy — for 2 years.

Now, you get the design and performance of our most popular Model 130, with greater accuracy, without any price premium. And the new 130A needs only one calibration each two years.

Performance assured

— for 2 years. With all the thousands of our handhelds in use, we know how dependable they are. So we can offer you two years warranty protection on the new 130A. Its single, rugged circuit board is specially cushioned against shock, and the panel legend is protected from wear-off.

Handles high currents. Easily measures up to 10A, AC or DC. Sensitive to $100\mu V$, $1\mu A$, and $.1\Omega$. The 130A gives you five functions on 26

ranges, diode check capability, and overload protection.

Oversize display.

The scratch-resistant LCD is up to 60% larger than most other multimeters, and features automatic decimal and both polarity and low battery indicators.

Get your hand on one. Check out Keithley's new 130A. For full specs, contact: Keithley Instruments, 28775 Aurora Road, Cleveland, OH 44139. Phone: (216) 248-0400.

Circle number 11 on Reader Service Card

letters

(November, page 11) surmised that the qualified women now outside academic physics would "be unwilling or unable to become professors of physics." Recent experience with the NSF Visiting Professorships for Women in Science and Engineering, however, supports a more optimistic outlook.

This NSF program, initiated in 1982, was designed to enable experienced women scientists and engineers to serve as visiting professors at academic institutions. Despite a lead time of only seven weeks between distribution of the program announcements and the application deadline, 118 proposals were received in response to the announcement, and 18 of these came from physicists and astronomers. The research proposals were of such high caliber, as evaluated in the usual peerreview process, and the funding was so limited, that the rejection ratio for highly rated proposals was several times that for typical programs. In all, 17 awards were made; two physicists and two astronomers were among the successful applicants. While approximately half of the awardees are already on academic faculties, the other half do not currently hold faculty positions in PhD-granting institutions. That split is true also for the physicists and for the astronomers.

The significance of the potential implied by these results must be considered in relationship to the situation requiring improvement. Findings of the Eisenstein-Baranger Survey on the 171 institutions in the United States granting PhDs in physics were reported in February 1982 (page 99). Of the 3665 senior physics faculty positions in these institutions, only 54 were held by women. An increase in this number by even one or two per year would be significant, particularly if that increase came in the 125 institutions having no woman at any rank among their physics faculty. Response to the NSF program adds further evidence to the findings of the APS Panel on Faculty Positions for Women Physicists, suggesting that there is a substantial pool of women, with the appropriate credentials, who would be willing and able to make the required career changes if suitable opportunities were presented.

CAROL JO CRANNELL NASA-Goddard Space Flight Center 2/83 Greenbelt, Maryland

The Council of the American Physical Society officially recognized the underrepresentation of women physicists on the faculties of major universities in 1981, by appointing a panel on senior faculty positions for women. The goals of the Council were to highlight the situation and to increase the number of women in senior faculty positions. I am pleased to report that the APS has now been joined in this endeavor by the American Astronomical Society, which has added two distinguished astronomers, Vera Rubin and Jeremiah Ostriker, to the Joint Panel.

The Panel now regularly receives letters from heads of departments and search committees. Through this means and others, the Panel is currently aware of dozens of open positions, either at tenure rank or convertible to tenure rank if a highly qualified woman candidate is identified. Although the faculties of US physics and astronomy departments as a whole are not expanding, there is still turnover in the system, even in departments of high research accomplishment and prestige.

At the same time, the Panel has identified dozens of women physicists who not only have had the kind of "notable careers in industry and in government laboratories" that I mentioned as an example in my March 1982 guest editorial, but also are willing to be approached by university departments. As with a significant number of men who first took industrial or government laboratory positions and later found satisfying faculty appointments in research universities, some of these women have indicated that they are now willing to explore the opportunity to work with graduate students in a university research setting, to teach and to join colleagues in the life and work of an academic community. By their accomplishments, these women have earned the attention of our Committee and would be valuable additions to this community.

Key to accomplishment of these APS and AAS goals is the encouragement of high standards for these appointments. This includes both the qualifications of the women and the resources for their research to be provided or found in the university setting. From its experience to date, the Panel is encouraged to believe that these goals and high standards are realistic. The proportion of senior women in academic positions is very small, but when the numbers are small, each new appointment can be significant.

RALPH O. SIMMONS

APS-AAS Panel on Faculty Positions
for Women Physicists and
Astronomers

Arms-race education

PHYSICS TODAY is certainly to be commended for assembling the March issue, which addresses the single most crucial issue of our time, the nuclear arms race, and points to the benefit

1000 WATTS OF RF POWER ALL SOLID STATE COMPACT, RUGGED UNIT.

Broadband Power Amplifier: 1000 watts, 0.3 to 35 MHz. Primarily designed for use in HF transmitters, linear accelerators, plasma equipment, NMR systems and RFI/EMI applications, the A-1000 broadband power amplifier can deliver 1000 watts from 0.3 to 35 MHz. Extraordinarily compact, efficient, and ruggedly built, this completely solid state unit can operate reliably under the most extreme environmental conditions.

For more information, or a full-line catalog, contact **ENI**, 3000 Winton Road South, Rochester, NY 14623. Call 716/473-6900, or telex 97-8283 ENI ROC.

The advanced design line of RF power amplifiers.