

Get the high power output and wide frequency coverage you need from MATEC pulsed oscillator and gated amplifier systems. These versatile instruments adjust to your most innovative ultrasonic attenuation and velocity, NDT, and pulsed nuclear resonance applications.

Frequency Coverage

- 100 kHz to 150 MHz
 with Gated Amplifier Systems
- 1 MHz to 700 MHz with Pulsed Oscillator Systems

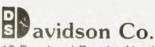
Peak Power Output

- 500 3000 watts rms with Gated Amplifier Systems
- 250 1000 watts rms with Pulsed Oscillator Systems

Also available for increased user flexibility – moderate power systems, fast recovery broadband receivers, instruments for pulse echo overlap and a wide range of accessories. Contact: MATEC, Inc., 60 Montebello Road, Warwick, RI 02886 (401) 739-9030.

MATEC, INC.

Versatile Instruments for User Innovation


Circle number 65 on Reader Service Card

PORTABLE MULTI-CHANNEL ANALYZER MODEL 4106A

- ☐ 4096 Channels
- ☐ 100 MHZ ADC
- ☐ 12 Pounds
- □ Pulse Height
- ☐ Multi-Channel Scaler
- ☐ Time of Flight
- ☐ Particle Size Optional -

HV Bias Supply GPIB I/O RS232 I/O

19 Bernhard Road • North Haven, CT 06473 • (203) 288-7324

Circle number 66 on Reader Service Card

able to continue to work with him over three decades. It was a period during which the work in several areas in which Breit was interested came of age, usually with his help.

McAllister H. Hull Jr University of New Mexico

Earle Covington Gregg

On 13 May 1983 Earle C. Gregg, highly respected in medical and radiological physics, died at his home in Chagrin Falls, Ohio. Born in Cleveland, Gregg did both his undergraduate and graduate work at Case Institute of Technology, obtaining his PhD in physics in 1949. In 1958 he was appointed professor of radiology in physics at Case Western Reserve University and physicist in the department of radiology at the University Hospitals of Cleveland. In 1978 he became chairman of the Biophysics Study Program at Case. He occupied all of these positions at the time of his death.

As a research associate at MIT (1942-43) and at Columbia (1943-46), Gregg did early work on ultrasonic absorption in liquids, on underwater acoustic transients, and on the biological effects of ultrasound. Returning to Case, he wrote a number of papers on betatron research, which included the design of a flux-forced field-biased betatron. His contributions to research on sound continued, dealing with the physical basis of pain threshold measurement in humans and on the absolute measurement of the vibratory threshold. He did fundamental research in nuclear and radiation physics on photonuclear reactions in beryllium and lithium, on the energy spectrum of electrons in aluminum produced by 18-MeV bremsstrahlung and on the scattering of highenergy gamma rays. Gregg had wide interests in imaging, both in diagnostic radiology and nuclear medicine. He contributed to information theory, image assessment, image enhancement, scanning, and tumor detection. Radiation risk analysis was also among his specialties. Biophysics was yet another area of his wide-ranging research activities. His most recent research interests included radiation mutagenesis in murine lymphoma cells, detection and delineation of soft tissue tumors with microwaves and ionization phenomena in irradiated liquids.

An Earle C. Gregg Memorial Fund scholarship fund for support of radiation research has been established at Case Western Reserve University. Contributions can be sent to the Case Western Reserve School of Medicine (Cleveland, Ohio 44106).

EDWARD R. EPP
Massachusetts General Hospital
Harvard University