

Circle number 92 on Reader Service Card

OEN VUV-VIS-NIR

Monochromator

Lightsource Specialists
now combined in our firm

We have designed systems used in great numbers by **Hewlett Packard**, **Spectra Physics**, **Waters Associates**, **Gilford Instruments** and many others. Monochromators in Spectrophotometers designed by members of our crew are in use world-wide.

We are true specialists, well equipped to serve as your OEM supplier of Opto-mechanical systems and assemblies. Let us quote on some of your requirements. Consider using some of our standard components to solve your specific Spectroanalytical problem. We would be happy to send you more details.

McPHERSON

DIVISION OF SCHOEFFEL INTERNATIONAL CORP. 530 Main Street, Acton, Mass. 01720

PLASMA/FUSION SHOW-BOOTH 16

Circle number 93 on Reader Service Card

letters

needed "to wipe out altogether" their enemy. No, I do not believe "that they can be deterred from such a catastrophic course of action" by ever more nuclear arms. Rather the opposite! Under the present circumstances having more nuclear weapons does not give more strength, but instead increases the vulnerability by raising the likelihood of preventive attack, quite apart from the threat posed by your own stocks of nuclear materials.

The Soviets lost 20 million people in WWII and they are determined not to let that ever happen again. When Doomsday comes, it will not be because of a "gamble for world domination" but as a consequence of mutual mistrust.

HENK WIND
Founex, Switzerland

High-school physics decline

Only about 10 percent of high-school graduates now take physics, and the percentage is still declining. Unless something is done, physics will follow the path of Latin to extinction. I believe the decline is due to two chief causes:

▶ High schools have only a minimal science requirement

▶ Universities offer no incentive to take physics

For college prep people, the first is largely the result of the second. Let's face it: College physics policies are more than slightly to blame for the decline of high-school physics. Most existing high-school physics courses and teachers are at least passable. But students lack the incentive to take physics when they can take "Law Enforcement" or "Marriage" courses instead.

Incentive is lacking because colleges offer no premium for high-school physics. We must reserve our traditional first-year college physics courses for those who have passed high-school physics with at least a C. Others would be required first to take a one-semester descriptive course from a text such as Hewitt's. That would acquaint them with physics while providing incentive for high-school physics. Other benefits would also result.

How can this be accomplished? One possiblity is the following: The APS could circulate a resolution to this effect among the colleges and universities, to be signed by those who agree to implement it within two years. A list of signatories would be made available to all colleges. They, in turn, would then publicize this list together with the new requirement to all high schools from which each normally draws its students.

Other approaches are also possible. But colleges must do something at once to provide incentive for high-school physics.

FREDERICK BUECHE University of Dayton Dayton, Ohio

6/82

Page charges once more

I wish to comment on David Lazarus' apologia/justification for APS/AIP page charges in April (page 9).

The data that Lazarus presents show that library subscription page costs for APS/AIP journals are lower by a factor of 3-5 than those of the publications of, say, the Institute of Physics. Presumably such lower subscription costs are due wholly or in part to the payment of publication page charges to APS/AIP. Although relatively low subscription page costs appear attractive in a library budget, considered in isolation, the corresponding true cost to an institution, or to the scientific world in general, must include publication charges that subsidize subscriptions. Relative efficiencies in the dissemination of information can only be assessed by comparison of true costs.

Lazarus seems to imply that individual subscriptions are inherently desirable. I doubt that this is true on a broad view. I suspect that individual subscribers need to have available typically less than about 10% of the information they receive by subscription. My suspicion could be tested by survey, but if it is even approximately correct it indicates a substantial waste of resources. With the present necessity for some degree of specialization in research, and with the current volume of published scientific literature, surely the most important desideratum in receiving and retaining information should be selectivity. In this connection, a well-organized reprint collection containing articles of genuine interest is evidently much more efficient than a shelf of Physical Review and the like, containing predominantly never-to-beread articles.

R. G. Ross University of East Anglia 5/82 Norwich, UK THE AUTHOR COMMENTS: Lower subscription prices for APS/AIP journals are a direct consequence of honoring of voluntary page charges. No special "magic" is available in our editorial and production processing which is not also available to, say, the Institute of Physics. The total of page charges should be placed in its proper context. As only a single example, but one available to me, the total bill for page charges for papers in condensed-matter physics at the University of Illinois (it is lower in elementary particle physics,

POROUS BULK GETTERS AND ADVANCED NON-EVAPORABLE GETTERS FOR ROOM TEMPERATURE OPERATION

saes getters

SAES GETTERS S.p.A. - Via Gallarate 215, 20151 Milano (Italy)

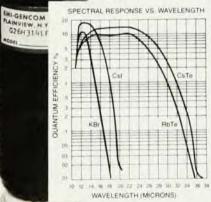
St 171 - A getter for high processing temperatures

St 172 - When low activation St 707 temperatures are necessary

SAES GETTERS/U.S.A. INC.

1122 E. Cheyenne Mountain BLVD Colorado Springs Co 80906 - U.S.A. tel. 303/576-3200 tx 454534

APPLICATIONS:


I.R. Dewars
Image Intensifiers
X-ray tubes
T.W.T.
Lasers
Ring Laser Gyroscopes
Industrial Solar Collectors
Any other sophisticated
vacuum device

PLASMA/FUSION SHOW-BOOTH 15 Circle number 94 on Reader Service Card

Fast UV Detectors

Suitable for experiments in Plasma Research, Fusion. Fast UV Lasers, Cerenkov Radiation Detection, Short-lived Free Radicals, etc. All types can be used in the single photo-electron mode.

Typical specifications

Gain: 10⁶ at 2300 volts for cesiated types Rise time: 3 nanoseconds Cathode Diameter: 0.625 inches Window Material: MgF₂ is standard. CaF₂, LiF, and fused

Cathode types: Csl, CsTe, RbTe, KBr, Bialkali, and S-20.

Power supplies and housings with vacuum coupling flanges and RFI shielding are available for all types.

NORTH AMERICA

THORN EMI Gencom Inc.

80 EXPRESS STREET, PLAINVIEW, NEW YORK 11803 (516) 433-5900 TWX: 510-221-1889

Elsewhere THORN EMI Electron Tubes Limited Bury St., Ruislip, Middlesex, HA47TA England

Circle number 95 on Reader Service Card