letters

Computer teaching

I speak about machine teaching-the computer teaching-so highly endorsed by Alfred Bork and others (September, page 24): Nowhere ever does the student see or feel or hear any of the old-fashioned demonstrations! Can you imagine the student never seeing a sphere beating a disk beating a hoop down a hill! Or never seeing a spring obey Hooke-or the monkey and hunter-or the double cone that runs uphill-or a man on a rotating stool with a bicycle wheel-or the stick on two fingers-or the projection of UCM-or Archimedes' bucket and cylinder-or a ball on a stream of air—and I can name 1000 more in a jiffy! This machine business is a curse upon us-anathema! It robs the Beauty of Physics-it cheats the student-it is a sickness! It destroys the humanism the subject possesses.

Deliver us from this affliction—this plague—this evil monster—which so abuses the Spirit of Physics.

10.81

JULIUS SUMNER MILLER
Torrance, California

In his excellent article Alfred Bork displays the results of a computer integration of the equations of motion for a planet under gravitational attraction, and he states: "Looking at the figure, we see that the "orbits" in velocity space are circles, something not known to a great many physicists." This is undoubtedly true and we ask "Why?" a question never answered by a computer! The "something not known" is the Runge-Lenz constant of the motion

$$C \equiv \mathbf{v} \times \mathbf{A} - g\mathbf{r}/r$$

where $\mathbf{A} = \mathbf{r} \times \mathbf{v}$ is constant by Kepler's Law of Areas and $(-g/r^2)$ is the inverse-square law of acceleration. The mass of the planet is irrelevant for gravitational forces.

Place the z-axis along A and the x-axis along C, transfer $\mathbf{v} \times \mathbf{A}$ to the left-hand side, and square both sides, then

$$(Av_y - C)^2 + A^2v_x^2 = g^2$$

This is Bork's computer-generated circle in velocity space, with (g/A) as radius and (C/A) as displacement, both constants of the motion. (Of course, C is readily expressed in terms of the

other constants of the motion, that is, angular momentum and total energy.²) We leave to the reader the fun of studying the transition to parabolic and hyperbolic orbits in (1/r) fields; in velocity space they are still circles!

A similarly interesting circle is traced out by the velocity vector in real space. Vector-multiplying the Runge-Lenz vector by **A** we can solve for

$$\mathbf{v} = \frac{\mathbf{A} \times \mathbf{C}}{A^2} + \frac{g}{A} \frac{\mathbf{A} \times \mathbf{r}}{Ar}$$

and note that $(\mathbf{A} \times \mathbf{r})/Ar$ is a rotating unit vector perpendicular to r. This also shows the synchronism of the rotations in the two spaces and why the symmetry axes, C and A×C, are at right angles. The new edition of "Classical Mechanics" by H. Goldstein (Addison Wesley, 1980, footnote page 103) shows that the constant of the motion vector, C, was first exhibited by Laplace (1799) and others much before Runge and Lenz. (Perhaps it should be called the Laplace vector.) In addition, our description of the circular orbit in velocity space is just the solution to exercise 24 on page 125, also in the new edition of Goldstein's book.

These results are unfamiliar because planetary motions are studied by painful integration, or playful looking at a computer display, and never reviewed unless quantum mechanics is studied seriously.³ There is a certain beauty in the family of circles on a computer display, but there is elegance and conviction in a simple analysis. Both methods have their place but teach different things. They add but do not substitute.

References

- C. Runge, Vektoranalysis, vol. 1, S. Hirzel, Leipzig, 1919, p. 70; W. Lenz, Z. Physik 24, 197 (1924).
- L. D. Landau, E. M. Lifshitz, Mechanics, 3rd ed., Pergamon, Oxford (1976), pp. 35– 39.
- L. I. Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, New York (1968), p. 236.
 W. P. ALLIS

A. Bers L. P. Harten

Massachusetts Institute of Technology 11/81 Cambridge, Massachusetts

BNC pulse generators offer shaping, rate, and amplitude features rarely found elsewhere. Find out the whole story by requesting your free copy of BNC's Catalog 81. NIM Power Supplies also included.

Berkeley Nucleonics Corp.

1198 Tenth Street Berkeley, CA 94710 Telephone (415) 527-1121

Our infrared lasers come from a large family

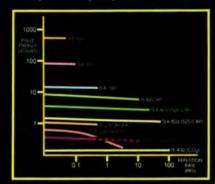
...the largest.

Lumonics has been the marketleader in pulsed infrared lasers for more than a decade, with many of our early products still being in daily use in laboratories throughout the world. Our investment in reliability engineering for our LaserMark* industrial on-line marking system enables our range of scientific research lasers to offer unparalleled levels of performance and dependability. If your research program calls for reliable state-of-the-art CO2 or HF/DF lasers — or for a customdesigned product of this class talk to the Company with the established reputation -Lumonics Inc.

Lumonics range of pulsed infrared lasers includes:—

TEA-100-2/TEA-200-2 Series CO_2 , HF/DF, CO, N_2O , pulse energies to 15 J, repetition rates to 3 pps. Kit versions available.

TEA-820 Series


50 watt CO₂ average power, 2.5 J at 20 pps or 1 J at 50 pps. Full range of accessories including hybrid SLM options. Sealed operation is possible.

TEA-820HP Series

High peak power version of TEA-820. Specifically designed for applications in photochemistry.

TF-270

Compact 1 J per pulse HF/DF laser.

TE-280/880 Series

10 atmosphere, continuously tunable CO₂ laser. Repetition rates to 10 pps (TE-880).

TEA-600/620 Series

Large aperture CO₂ oscillator or amplifier systems.

TE-612

Large aperture (9 x 9 cm), 3 atmosphere CO₂ amplifier for high power applications.

K-920 Series

Low cost CO₂ amplifiers — ideal for general purpose and short pulse applications.

Short Pulse CO₂ Systems

Short pulse (2ns or greater) systems with repetition rates to 3 pps and pulse energies from several hundred millijoules to 2 J are available.

Multi-module and customised versions of all of the above lasers are possible. Consult Lumonics Inc. for details.

LUMONICS

We're attuned to the pulse of research.

Lumonics Inc., 105 Schneider Road, Kanata (Ottawa) Ontario, Canada K2K 1Y3 Phone: (613) 592-1460 Telex: 053-4503

letters

The author comments: In reply to Julius Sumner Miller, I should first make it clear that there is absolutely nothing in my paper or in the use of computers in education more generally which precludes the possibility of the usual live "old fashioned demonstrations." I don't know why Miller has the view that the computer precludes demonstrations. In fact, there is no reason why one can't do just as many as one would ordinarily do.

I would certainly object that it "robs the beauty of physics—it cheats the students—it is a sickness." I think, in fact, that it has a variety of interesting and important applications and that it can make physics more understandable, more humane, to the student.

With regard to demonstrations, the computer can provide experiences for students, for building up student intuition, which are simply not available in the ordinary world. Thus, it can aid the process of intuitive understanding in the same way that ordinary demonstrations do.

Perhaps it will be difficult to convince Miller of the advantages of the computer in education. But for those who are still questioning, in one direction or another, I suggest that the best way to continue would be to go to a center that has sizable amounts of computer-based learning material, and to spend hours running that material. This experiences is usually a rewarding one for physics faculty.

In reply to William Allis et al., I am familiar with the Lenz vector. In fact, we use it in our beginning course, because it is one of the few examples of a conserved quantity that can be as-

signed in a problem!

But I don't think that the Lenz vector is the simplest way of seeing that the motion in velocity space is a circle. There are some much easier ways of doing that. The authors might want to consult Andrea di Sessa on their own campus for more information about this.

Alfred Bork University of California Irvine, California

Reader frightened

10/81

One would not expect to be frightened by reading Physics Today, but January contains such an alarming statement that it can in fact be frightening. Glenn Stumpff claims (page 93) that he does "not consider a nuclear war the worst thing that could possibly occur; having to live like Andrei Sakharov is worse." If that opinion were held widely, there could be little confidence in a nuclear counterbalance continuing to

preclude world catastrophe. One can only hope that Stumpff's attitude represents merely the extreme fringe, and that neither side of the present counterbalance believes it to be otherwise.

> W. H. HENRY National Research Council Ottawa, Canada

Nonphysicist as entrepreneur

2/82

2/82

The article "The physicist as entrepreneur" appearing in January (page 34) was informative, enjoyable and generally accurate.

One example you chose, however, (Coherent, Inc.) does not fit the thrust of your title theme. The founding organizational, financial, product and marketing concepts and strategies were formulated and executed by the purely marketing-oriented founder/president. Those who know him will verify that he does not fit the physicist/entrepreneur model

EUGENE L. WATSON Lasertechnics Albuquerque, New Mexico

Teach physics—or student?

I have been teaching high-school physics for sixteen years, possess a Bachelor of Science in physics and have done some graduate work in physics education under two NSF grants. Although I have been a member of AAPT for years and read *The Physics Teacher* and Physics Today avidly, it has only been within the last year that I have ventured to get involved with the local and national AAPT organization—this through research I am presently doing on the effects grades and testing have on genuine learning.

I have sensed a great deal of concern about the future of physics on the high-school level, the concern that college professors have that they are not receiving the quantity and quality of physics students that they would like and the admissions office's worry that students are staying away from physics courses out of fear of lowering their GPA. Out of this is the anxiety if physics will live or die and if our country can withstand such a collapse

of so basic a science.

I suggest that a major factor in this phenomena is that for too long we have been trying to teach physics to students rather than teaching students about physics. If you have difficulty noting the distinction in the prior sentence, that is the difficulty. Each of us must decide if we are primarily teachers or if we are primarily physicists. Although the two are obviously not mutually exclusive, each of us does have a prefer-

UHV INSTRUMENTS™ manufactures a complete line of precision accessories for the vacuum/surface specialist: precision manipulators, sample insertion and preparation devices, analysis probes, long stroke bellows devices. chambers, shear and tensile fracture devices. These devices can be used to prepare, fracture, transfer, and manipulate samples under vacuum. The accessories are compatible with most commercial analysis systems manufactured by PHI, Varian, HP, VG, Kratos, and others.

Call our sales office (416) 335-3103, or write for our new catalogue.

ULTRA HIGH VACUUM INSTRUMENTS INC.

901 Fuhrmann Blvd., Buffalo, N.Y. 14203

on the West Coast call our representative at Process Physics Inc. in San Jose (408) 942-1611.

Circle number 13 on Reader Service Card