
SIIIII POIIPOIS
Excess charges trap themselves in solids or liquids
by shifting the surrounding atoms, yielding entities whose
behavior sheds light on phenomena ranging
from charge solvation to photocarrier survival.
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We usually think of electrons in solids
and liquids as behaving like free parti-
cles whose motion is impeded by occa-
sional collisions. Evidence is now accu-
mulating for charge carriers with
qualitatively different behavior. These
new charge carriers, in the simplest
case, are extra electrons in condensed
matter that become trapped in poten-
tial wells of their own creation, forming
units known as small polarons.

In the last few years, experimental
and theoretical research on small po-
larons has intensified. The results of
this work are contributing to our un-
derstanding of a wide range of phenom-
ena, including, for example, the diffu-
sion of light atoms through metals, the
solvation of electrons in liquids, and
the nonradiative recombination of elec-
trons and holes in semiconductors and
insulators.

A small polaron is an extra electron
or a hole severely localized within a
potential well that it creates by displac-
ing the atoms that surround it. Inject-
ed electrons in liquid ammonia, for
example, solvate by forming small po-
larons, which provide the blue hue in
figure 1. We call a polaron "small"
when the spatial extent of the wave-
function of the excess electron or the
hole is less than or comparable to the
separation of the atoms or molecules.
The charge carrier then moves only in
response to appropriate motions of the
surrounding atoms. (Large polarons
have somewhat different properties,
and, although not the subject of this
article, are themselves the object of
much research.)

It has been almost 50 years since Lev
Davidovich Landau set forth 1 the no-
tion of the small polaron. Nonetheless,
it is recent years that have seen the
most rapid accumulation of evidence of
small polarons and the most rapid de-
velopment of the theory.

There is now evidence that small
polarons exist in alkali halides, some
transition-metal oxides (see A. Mar-
shall Stoneham's article in PHYSICS TO-
DAY, January 1980, page 34), rare-gas
solids, molecular crystals and various
glasses. While it is generally accepted
that the charge carriers in glasses con-
taining transition-metal ions and the
holes in amorphous silicon dioxide
form small polarons, the issue remains
a subject of debate for the chalcogenide
glasses and other amorphous semicon-
ductors (see the article by Jan Tauc in
PHYSICS TODAY, October 1976, page 23).

Small-polaron theory envisions a
charge carrier in a semiconductor or
insulator. However, the theory applies
generally to a particle or a quasiparti-
cle interacting with relatively massive
atoms surrounding it. For example,
replacing the electron or hole of small-



Extra electrons in liquid ammonia form
small polarons, which appear blue. Each
solvated electron resides in a potential well
produced by the orienting of ammonia
molecules that surround it. The polaron is
the entire unit made up of the self-trapped
carrier and the pattern of orientation of the
surrounding molecules. (Photograph courtesy
of Karl I. Trappe and James C. Thompson,
University of Texas, Austin). Figure 1

polaron theory with an exciton—an
electron bound to a hole—one obtains
the theory of the formation and motion
of self-trapped excitons. With modifi-
cations the theory also applies to:
• diffusion in metals of light intersti-
tial atoms such as hydrogen and its
isotopes
• solvation of electric charges in li-
quids
• phonon-assisted hopping of charge
carriers in semiconductors and insula-
tors
• nonradiative recombination in semi-
conductors and insulators, and
• the capture and release of charge
carriers from severely localized, or
"deep," polaronic traps, also in non-
metals.

The properties of small polarons are
often opposite those of quasifree charge
carriers. Because of its connection
with surrounding atoms, a small po-
laron has a mobility of less than 1 cm2/
V sec, which is very much lower than
that generally associated with quasi-
free motion. And while the mobility of
a quasifree carrier typically falls with
increasing temperature, small-polaron
mobility usually increases with tem-
perature. The Hall effect and the fre-
quency dependence of the mobility also
differ qualitatively from those of quasi-
free charge carriers. In fact, even the
sense in which a magnetic field deflects
a small polaron can be opposite to that
of a similarly charged free particle. In
this situation a small polaron circu-
lates in a magnetic field in the same
direction as an oppositely charged free
particle. Interactions between small
polarons can also differ significantly
from those of free particles. Namely,
like-charged small polarons may exper-
ience a short-range attraction, and op-
positely charged small polarons can
exhibit a short-range repulsion. It is
the challenge of predicting and observ-
ing such distinctive properties that has
spurred interest in small polarons.

In this article we will look at the
basic principles that govern the forma-
tion and motion of small polarons.

Small-polaron characteristics
What are the consequences of plac-

ing a stationary excess electronic
charge within a solid? The atoms that
surround the stationary carrier will
experience an additional Coulomb
force, which will alter their equilibri-

um positions (figure 2). These atomic
displacements are such as to lower the
potential energy of the excess charge.
If the potential well produced by the
atomic displacement pattern is suffi-
ciently deep, the carrier may occupy a
bound state. In this circumstance the
excess charge cannot escape from its
position in the solid without an altera-
tion of the positions of the surrounding
atoms. Because the potential well that
binds the carrier arises from atomic
displacements caused by the carrier's
presence, the carrier is said to be self-
trapped.

The polaron is the entire unit com-
prising the self-trapped carrier and the
atomic-displacement pattern. In the
case of a small polaron in a simple
inorganic solid—a hole in KC1, for ex-
ample—the characteristic radius of the
self-trapped carrier is less than or com-
parable to an interatomic separation.
As we mentioned earlier, we call such
polarons "small."

An electron, be it self-trapped or not,
can equally well reside at any of the
geometrically equivalent sites of a crys-
tal. Just as the partial lifting of this
translational degeneracy gives rise to a
band of Bloch eigenstates for quasifree
electrons, so, in the case of a small
polaron, Bloch-like small-polaron ei-
genstates result.2 In either situation
the width of the energy band in a tight-
binding scheme is proportional to the
energy associated with transposing the
carrier (quasifree electron or small po-
laron) between identical local states
centered at adjacent, topologically
equivalent crystal sites.

However, for a small polaron this
transfer energy is typically many or-
ders of magnitude smaller than it is for
an electron. The reason for this differ-
ence is that transposing a small po-
laron requires transferring not only
the self-trapped electron but its atomic
displacement pattern as well. The lat-
ter component involves the quantum-
mechanical tunneling of the atoms
comprising the small-polaronic dis-
placement pattern; the atoms tunnel
between two different displacement
patterns. Because a number of these
atoms would have to tunnel distances
that are much larger than the decay
lengths of the atoms' wavefunctions,
such motion is relatively rare. Thus
the transposition of the displacement
pattern is characterized by a very small
transfer energy, and the transfer is
slow. That is, the small polaron is
typified by a very narrow bandwidth—
much less than one meV.

I should stress here that the term
"polaron" is an unfortunate misnomer.
The term was coined as an outgrowth of
early considerations of self-trapping in
polar and ionic solids. In these materi-
als the charge carrier interacts with the
long-range dipolar polarization field as-

sociated with the relative displacement
of different types of atoms, such as the
anions and the cations of an ionic lattice.
Such displacements are characteristic
of optic- and polar-mode lattice vibra-
tions. However, self-trapping is not at
all restricted to polar and ionic materi-
als with a long-range dipolar component
of the electron-lattice interaction. In
fact, in most instances of small-polaron
formation it is the short-range compo-
nent of the electron-lattice interaction
that plays the major role. Here, the
energy of a carrier depends primarily
upon the displacements of neighboring
atoms. Thus, self-trapping occurs in
covalent as well as polar and ionic
materials. And it generally involves the
interaction of the carrier with acoustic
as well as optic vibrational modes.

Formation of small polarons
In what follows we will assume that an

excess charge has a short-range interac-
tion with the atoms of asolid. That is, we
presume that the energy of an electron
depends only on the displacements of
atoms in its neighborhood. A short-
range electron-lattice interaction al-
lows only two qualitatively distinct
types of groundstates for an excess
electron in a deformable solid.3"5 Either
the charge carrier remains unbound or
it self-traps to form a small polaron.

To understand the origin of this di-
chotomy, first consider the analogous
situation of an electron in an isotropic
elastic continuum.56 Here the poten-
tial energy of the electron varies linear-
ly with the deformation, or "dilata-
tion," of the continuum at its location.
Noting that the electron is very much
lighter than the atoms of the material,
we employ the adiabatic approxima-
tion. That is, we consider the electron's
energy to be a function of the static
deformational configuration of the con-
tinuum.

There are three contributions to the
system's energy: the electron's kinetic
and potential energies and the elastic
energy required to strain the contin-
uum. By minimizing the sum of these
energies with respect to dilatation we
get5-6 an expression for the ground
state dilatation of the system:

A(r) = -Z/S\V(r)\2

Here Z is the energy characterizing the
strength of the electron-continuum in-
teraction (analogous to the deforma-
tion potential constant), S is the stiff-
ness coefficient of the elastic
continuum and vf(r) is the electron's
wavefunction. Thus dilatation in-
creases with the interaction strength,
decreases with the material's stiffness
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Polaron formation, electron energy and po-
laron energy, a: Excess electron (dot) dis-
places lattice atoms (circles), forming a po-
laron. b: Displaced atoms provide a potential
well (dark curve) that differs from that pro-
duced by undisplaced atoms (light curve).
The electron's energy decreases by the self-
trapping energy, c: The polaron has less
energy than does an electron in a perfectly
rigid solid. The energy of the polaron is lower
by its binding energy Eb, which is the differ-
ence between the self-trapping energy and
the strain energy associated with deforming
the lattice. Figure 2

and mirrors the electron's density dis-
tribution.

At an energy minimum, the station-
ary wave equation

[ - {tfl2m)72 + ZA(r)]¥(r) = EV(r)

becomes the nonlinear differential
equation

[ - (#72m)V2 - (Z 2/S)|¥(r)|2]V(r)
= E<Hr)

This equation, analogous to those for
solitons, admits localized as well as
nonlocalized solutions.

For example, with the electron's den-
sity spread uniformly over an arbitrar-
ily large volume V, the interaction
term is negligible because I^MI2 is
proportional to 1/ V, and the electron is
essentially free. However, solutions for
which the electron is localized (self-
trapped) are also possible.

The small-polaron solution. We can
readily use a scaling argument to ex-
tract the essential features of the

ground-state solutions of the eigenva-
lue equation.56 Noting that the ground
state solution for an isotropic system is
spherically symmetric, we write the
energy E of the system as a function of
a single scaling parameter R, which is
related to the spatial extent of the
electron's wavefunction. In particular,
for a well-behaved eigenstate of finite
radius, the true ground-state energy,
the minimum of E{R), occurs at .ft = 1.
It turns out that

E(R) = Te /R2 - Vint IR
d + £9train IR

d

= Te/R
2-V,nt/2Rd

where Te and Vint are constants respec-
tively related to the electron's kinetic
and potential energies, and d is the
dimensionality of the continuum. We
have used E3train = V2 Vint, which is val-
id when the electron's potential energy
varies linearly with the dilatation.

As figure 3a shows, for a one-dimen-
sional continuum, E(R) possesses a
minimum at a finite radius. However,
for a three-dimensional system there
are two relative minima. The mini-
mum at R = oo corresponds to a free
electron in an unstrained continuum—
analogous to a conduction-band state.
The minimum at R = 0 corresponds to
an electron bound in an infinitely deep
well of infinitesimal extent—the con-
tinuum version of a small po'aron.

The two minima are separated by an
energy barrier. Thus, to pass adiabati-
cally between nonpolaronic (R = oo)
and small-polaronic (R = 0) states re-
quires a change in deformation para-
meters. This occurs only when energy
is supplied to the system—going over
the barrier—or when the atoms of the
continuum tunnel quantum-mechani-
cally between different deformational
configurations—passing through the
energy barrier.

By way of contrast, in the one-dimen-
sional system there is no such impedi-
ment to a free charge forming a po-
laron.56 There a charge will displace
the atoms surrounding it in a time of
the order of an atom's vibrational peri-
od, about a picosecond. With such a
temporal measure in mind, researchers
speak of the energy barrier in the
three-dimensional system as creating a
"time delay for self-trapping." Here
one pictures an injected charge wan-
dering quasifreely through a solid until
it encounters a situation in which the
atoms surrounding it have assumed a
configuration that is suitably deformed
so that relaxation to the self-trapped
state proceeds without impediment.

The fact that the small-polaron state
(at R = 0) is always lower in energy
than the nonpolaronic state (at R = oo)
is an artifact of the continuum model.
Actually, in a simple monatomic dis-
crete system the electron-lattice inter-
action saturates as the radius of the
self-trapped electron shrinks to less

than an interatomic separation. If we
incorporate this feature into the con-
tinuum model, then E(R) cuts off when
R is less than a critical radius i??,
which is comparable to an interatomic
distance. With the cut-off at a smaller
value of R than that of the peak oiE{R)
(see figure 3a), the small-polaron state
is either metastable, E{Rc)>E(x), or
stable, E(Rc)<E(oo).

Effect of defects. The electron-contin-
uum interaction can act synergistically
with the localizing potentials associat-
ed with defects to produce small-polar-
onic localized states.6 Consider, for ex-
ample, an electron in a deformable
continuum in the presence of a positive-
ly charged defect (figure 3b). Without
any electron-continuum interaction
there is a single finite-radius (hydro-
genic) minimum associated with an
electron in the defect's Coulombic well
(curve a). However, with a finite elec-
tron-continuum interaction, a severely
localized small-polaronic defect may
form (curve b). The dichotomy between
large-radius weakly polaronic defect
states and small-polaronic defect states
is analogous to that between nonpolar-
onic and small-polaronic states in a
defect-free continuum. However, when
the attractive potential of the defect,
and the electron-continuum interac-
tion are both of sufficient strength, the

SPATIAL EXTENT OF WAVEFUNCTION R

SPATIAL EXTENT OF WAVEFUNCTION R

Ground-state energy of a system consisting
of an electron in a deformable continuum
depends on the spatial extent of the electron's
wave function, a: Electron in one- and three-
dimensional continua. b: Electron in a three-
dimensional continuum with a positively
charged defect. Energy is plotted for three
successively greater strengths of electron-
continuum interaction (a, b and c).6 Figure 3
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barrier to the small-polaronic state is
eliminated, as in curve c, and only the
small-polaronic defect state survives.
Thus, the localizing potentials of de-
fects generally reduce, and sometimes
destroy, the barrier to self-trapping,
thereby enhancing the likelihood that
small polarons will form.

Theoretical physicists have carried
out variational studies beyond the adia-
batic approximation to determine the
eigenstates of an excess electron in a
deformable crystal.45 Here the atomic
deformation pattern is no longer con-
strained to be static. Figure 4 depicts
schematically the situations in which
dynamically stable nonpolaronic and
small-polaronic carriers can exist in
such a crystal. The carrier's energy is
plotted against the electron-lattice in-
teraction strength y, which is propor-
tional to the small-polaron binding en-
ergy. Increasing y may be thought of as
placing the electron in progressively
softer, more deformable, materials.
From this point of view, the very nar-
row band of small-polaronic states ex-
ists only for sufficiently soft materi-
als—those having y>y3p (figure 4). In
these materials a small polaron forms
when the electron causes a substantial
displacement of the surrounding atoms
and is self trapped. The relatively wide
bands of nonpolaronic states, the usual
conduction-band states of a semicon-
ductor or insulator, exist only for suffi-
ciently stiff materials—those for which
y < ys. In these stiff materials the pres-
ence of the carrier induces only mini-
mal changes in the positions of the
lattice atoms.

For sufficiently weak electron-lat-
tice coupling, characterized by y < ysp,
a small polaron is unstable and will
decompose. For y>ys the nonpolar-
onic electron is dynamically unstable
and will collapse to a small polaron.
That is, in such soft materials the
electron cannot move between atomic
sites fast enough to preclude inducing
significant displacements of the atoms
surrounding it. It collapses to a small
polaron much as a pebble skimming a
pond sinks when it slows. Consistent
with the adiabatic approximation of a
three-dimensional continuum, in the
adiabatic limit for a lattice, ya —• oo
and ysp —• 0 so that both nonpolaronic
and small-polaronic states coexist for
all values of the electron-lattice cou-
pling strength y. Thus we understand
the conditions under which a charge
carrier self-traps and forms a small
polaron as well as the conditions under
which it remains nonpolaronic.

Small-polaron hopping
There is uncertainty in the small

polaron's energy because of scattering
events and site-to-site variations in the
potential energy associated with de-
fects and disorder. This uncertainty
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Energy bands as a function of crystal stiffness. Schematic diagram shows the lowest-lying
energy levels available to an electron in a 3-dimensional insulator. Crystal lattices become more
deformable—less stiff—as one moves to the right on the horizontal axis.5 Figure 4

often greatly exceeds the width of the
small-polaron band, which is extremely
narrow. As a result, the polaron's mo-
tion is usually described as proceeding
via a succession of phonon-assisted hop-
ping events.2

Figure 5 shows the steps that may be
involved in a single hop. The two
frames at the bottom of the figure
depict the atomic displacement pat-
terns and potential wells for a small
polaron located at each of two equiva-
lent adjacent lattice sites. The direct
motion of the small polaron between
equivalent sites is related to small-
polaron banding and involves a single
step (path a). Here the electron and the
equilibrium deformation pattern con-
currently tunnel between the two si-
tuations.

In addition to direct motion, hopping
occurs indirectly, in what we can think
of as a three-stage process.
• First, amidst random oscillations
about their equilibrium positions, lat-
tice atoms in the vicinity of the electron
assume a distortion pattern that is
associated with a greater transfer rate
than that of the equilibrium distortion
pattern. Here the disparity between
the two deformation patterns involved
in the transfer of the electron is less

than the disparity between their equi-
librium configurations. Such an atom-
ic configuration comes about through
the transient concentration of vibra-
tional energy in the vicinity of the
electron.
• Second, the electron moves between
degenerate electronic energy levels.
Transient deformation patterns that
involve relatively small local concen-
trations of vibrational energy differ
only slightly from those of the ground
state. So the transfer rate is still re-
duced by the incomplete overlap of
initial and final atomic displacement
patterns (path b). However, with a
greater concentration of vibrational en-
ergy, it is possible to have deformation
patterns between which an electron
can transfer without bringing about
further deformation (path c). The oc-
currence of such a configuration of
lattice atoms, for which the electronic
energies associated with the initial and
final sites are equal, is termed a "coin-
cidence event." We speak of electronic
hops involving coincidence events as
semiclassical because tunneling of the
atomic deformation pattern does not
play a significant role.

• Third, after the electron transfers
between sites, the local deformation
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pattern relaxes, dissipating the distor-
tional energy to the material as a
whole.

Jumping rate. Figure 6 is a represen-
tative plot of the small-polaron jump
rate as a function of reciprocal tem-
perature, measured in units of 6, a
temperature characteristic of the atom-
ic vibrations.7 For acoustic phonons, 6
is of the order of the Debye tempera-
ture. At low temperatures (T<0) the
jump rate is nonexponential, that is, it
does not obey Arrhenius's law. In this
nonexponential region, increasing tem-
peratures bring into play higher-ener-
gy processes, which involve progressi-
vely more overlap between initial and
final atomic displacement patterns.
These processes contribute increasing-
ly to the jump rate.

At sufficiently high temperatures

I c

(TS 9) the atomic overlap is essentially
unity, because the predominant me-
chanisms of transfer are semiclassical.
The jump rate R is then simply ther-
mally activated. Its activation energy
EA is the minimum energy required to
deform the equilibrium configuration
so as to allow a coincidence event.
Explicitly, in the high-temperature
semiclassical regime

R= [vexp(-EA/kT)] P

where v is the characteristic atomic
vibrational frequency, kd/h. The term
in square brackets in the equation re-
presents the rate at which a carrier
experiences coincidence events. The
final factor, P, is the probability that an
electron will respond rapidly enough to
the occurrence of a coincidence event so
as to negotiate a hop.2

Initial Final

Hopping of an electron-based small polaron. The trapped electron hops by following changes in
the displacement pattern of the surrounding atoms. The short lines depict the lattice
displacement pattern by connecting the position of each atom with the position it would have in a
carrier-free lattice. Black dots represent atoms; red dots represent electrons or atoms with an ex-
tra electron. Potential wells and electron energy levels appear below the associated displace-
ment patterns. Three hopping mechanisms are shown: a, direct motion; b, low-temperature
hopping; c, high-temperature (semiclassical) hopping. Figure 5

The time required for an electron to
move between coincident levels varies
inversely as the transfer energy, which
is proportional to the energy splitting
associated with the degenerate elec-
tronic levels of a coincidence event.
For sufficiently large transfer energies
the electron can always adjust to the
atomic motion and move between sites;
the hops are then termed adiabatic and
P~ 1. Alternatively, when the transfer
energy is small the electron has only a
limited ability to follow the atomic
motion. We refer to these hops as
nonadiabatic, and P is both much less
than unity and proportional to the
square of the transfer energy.

We can generalize the theory of
phonon-assisted hops between equiva-
lent states at equivalent sites to include
phonon-assisted transitions between
inequivalent states.8 The results apply
to many problems including electron
hopping in disordered materials, the
capture and release of carriers by traps,
nonradiative recombination, photon-
assisted hopping and hopping in an
applied electric field.

The diffusion constant associated
with the hopping of a small polaron is
inversely proportional to the mean
time between hops. When the mean
time between hops is less than the time
required for the atomic displacement
pattern associated with a hop to relax,
successive hops of a small polaron will
be correlated.9 Then the charge will
move to another site before the local
vibrational excitation associated with
preceding hops has dissipated. Thus,
the charge finds itself surrounded by
atoms of greater than usual vibrational
agitation, which enhances the likeli-
hood of a hop. The activation energy
associated with such correlated hop-
ping can be small enough that the
small-polaron mobility has a very
weakly temperature-dependent value
of about 1 cm2/V sec. One finds this
behavior in a wide variety of molecular
solids (see the article by Charles Duke
and Larry Schein in PHYSICS TODAY,
February 1980, page 42).

Hall effect
The motion of a small polaron in a

magnetic field is qualitatively distinct
from that of a nearly free charge car-
rier. For free charges the Hall mobil-
ity—the angular deflection of a carrier
per unit magnetic field—has the same
value as the drift mobility—the steady-
state drift velocity of a carrier per unit
electric field. Furthermore, for free
charges the sign of the Hall mobility is
determined solely by the sign of the
carrier. For small-polaron hopping
neither of these two characteristics ap-
plies in general.

To appreciate the origin of these
differences, note that reversing the ori-
entation of the magnetic field cannot
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Rate of small-polaron jumping typically in-
creases rapidly with temperature, as this typi-
cal plot shows. Reciprocal temperature is
measured in units of 6, which is on the order of
the Debye temperature.6 Figure 6

alter the direct motion of a charge
between two sites, which is the primary
mechanism underlying the drift mobil-
ity. However, the Hall mobility arises
from contributions to the jump rate
that involve interference between the
transition amplitudes associated with
various paths between initial and final
sites (paths traversing one or more
intermediate sites). These contribu-
tions do depend10 on the sign of the
magnetic field (see figure 7). Thus the
Hall mobility is generally quite differ-
ent from the drift mobility.

The magnetic field manifests itself in
hopping motion when the atoms as-
sume a deformation pattern that gives
the carrier a choice between two equi-
valent final sites. Thus, for example, in
the semiclassical regime, while the
drift mobility is associated with the
occurrence of a coincidence event in-
volving two sites, the Hall effect is
associated with the occurrence of a
coincidence event involving three sites.
The resulting activation energy for the
Hall mobility is the difference between
the energies associated with forming
triple and double coincidence events,
while the drift mobility activation en-
ergy is simply that of forming a double
coincidence. Typically, the small-po-
laron Hall mobility is much less tem-
perature-dependent than is the drift
mobility.11 In fact, the Hall mobility of
hopping small-polarons can even fall
with rising temperature (see figure 7).

The sign of the Hall coefficient gener-
ally depends not only upon the sign of
the carrier, but on the topology of the
sites and the local orbitals between
which the carrier moves.12 For exam-
ple, if an odd number of sites are
involved, the sign of the Hall coefficient
depends upon the sign of the product of
the electronic transfer integrals asso-
ciated with each step of the predomi-
nant interference process. The sign of

this product depends on the symmetry
and topological arrangement of orbi-
tals between which the carrier moves.
In various instances the sign of the Hall
coefficient is anomalous relative to that
of a free carrier. For example, a mag-
netic field may deflect electron-based
small polarons in the same direction
that it deflects positively charged free
particles. Researchers have seen Hall-
effect sign anomalies in various amor-
phous semiconductors, including amor-
phous silicon, germanium, arsenic and
many chalcogenide glasses.

Small-polaron interactions
The interactions between small po-

larons can be markedly different from
those of simple stationary charges.
The reason for the difference is that, in
addition to the direct Coulomb interac-
tion between the charges, small polar-
ons interact via the overlapping of
their atomic deformation patterns.13

Consider, for example, the indirect in-
teraction between two electrons at
large separation that are each self-
trapped as a result of their attraction of
nearest-neighbor atoms (see the left
half of figure 8). The electrons exert
counteracting forces on the atoms
between them. As a result, the atomic
displacements associated with self-
trapping are partially negated, thereby
raising the energy of the pair of small
polarons: At sufficiently large separa-
tions the interaction of atomic displace-
ment patterns is repulsive.

However, as the separation between

the electrons is reduced, they increas-
ingly act in tandem to displace an
increasing number of atoms that sur-
round them. Ultimately, when the
electrons occupy the same site, the
surrounding atoms are attracted by
both charges. This increases the mag-
nitude of the atomic displacements.
Concomitantly the one-electron energy
of each self-trapped electron is lowered,
as is the total polaronic energy of the
system. Thus, at sufficiently small sep-
arations the small polarons experience
an attractive component in their inter-
action.

If this attractive interaction exceeds
the Coulomb repulsion of the two elec-
trons, the pair of negative small polar-
ons may bind together into a bipolaron.
Investigators have been using the no-
tion of the bipolaron for several de-
cades in an effort to understand the
ground state of electrons in liquids,
transition-metal oxides, organic solids
and amorphous semiconductors.

Just as like-charged small polarons
can experience a short-range attrac-
tion, so small polarons of opposite
charge can encounter a short-range
repulsion. This occurs when the forces
of oppositely-charged small polarons on
the atoms surrounding them are in
opposite senses, as shown in the right
half of figure 8. The repulsion between
oppositely-charged small polarons
arises through the same mechanism
that produces the attraction that we
have just described between like-
charged small polarons. The short-
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Drift and Hall mobilities are plotted here against reciprocal temperature for three values of the
relative strength of coupling between electrons and the lattice.11 Relative strengths are (a) 1.00,
(b) 1.25, (c) 1.67. Figure 7
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Interactions between small polarons are attractive or repulsive depending upon the charge
and separation of the polarons. The net force between two small polarons is the result of
competition between the interference of their atomic displacement patterns and the Coulomb
force between their charges. Symbol scheme follows that of figure 5, with blue dots representing
holes. The small-polaron energies reflect only the interaction due to overlap of atomic
displacement patterns; they do not include the direct coulomb interaction. Figure 8

range repulsion between electron-
based and hole-based small polarons
can drastically affect recombinative
properties such as photocarrier life-
times and the transient behavior of the
luminescence associated with recom-
bination.

Research on small-polaron formation
and motion continues at an accelerat-
ing pace. Investigators are measuring
transient optical and electrical signals
to study the time delays associated with
self-trapping and capture in severely
localized small-polaronic traps. The
circumstances in which the imposition
of disorder triggers self-trapping are
receiving attention. An attempt to un-
derstand the motion of carriers of inter-
mediate mobility (about 1 cm2/V sec)
has led to an extension of the theory of
correlated small-polaron hopping mo-
tion. And researchers are applying
small-polaron hopping theory to the
mutually analogous situations of light
interstitial diffusion, nonradiative re-
combination, trapping and phonon-as-
sisted hopping in general. Meanwhile,
data on small polarons accumulates
from studies of the electronic and opti-
cal properties of crystalline and non-
crystalline semiconductors, narrow-

band insulators, molecular solids and
liquids.

* * *
This work on small polarons is supported by
the United States Department of Energy
under contract number DE-AC04-
76DP00789.
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