
Defects in liquid crystals
Appearing under the polarizing microscope as ellipses, parabolas,
hyperbolas, lines and points, colorful structural singularities are understood
through topological and geometrical arguments.

William F. Brinkman and Patricia E. Cladis

The most striking feature of liquid
crystals is the wide variety of visual
patterns they display. These patterns,
such as those shown in figure 1 and on
the cover, are due almost entirely to
the defect structure that occurs in the
long-range molecular order of the liq-
uid. Indeed, historically, the underly-
ing structure of the liquid-crystal
phases known as nematic and smectic-
A was discovered from a study of stable
defects that characterize these phases.
Such defects are easily visible in the
optical microscope. By examining the
thin and thick thread-like structures
observed in nematic liquid crystals,
Otto Lehman1 and Georges Friedel2

deduced that this phase involves long-
range orientational ordering of the
long axis of the rod-like molecules. (The
direction of this orientational ordering
is what we now denote by the unit
vector n, called the director.)

More remarkably, Friedel's observa-
tion and elucidation of defects that look
like confocal pairs of conic-section
curves (focal conic defects, figure 1) in
smectic-A liquid crystals—at that time
often called the liquid with cones—led
him to conclude that smectic A is a
layered system. He futher found2 that
the planes of molecules are perpendicu-
lar to n. Nevertheless, generations of
observers have been mystified by the
focal conic domains and the extraordi-
narily constant layer spacing over mac-
roscopic distances implied by their
structure. Indeed, Friedel's fundamen-
tal geometrical arguments, which di-
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rectly couple the existence of such do-
mains to the smectic structure, seem
frequently to become lost in the discus-
sion.

Recent years have seen increased
interest in liquid crystals and their
defects. Research on the latter has
focused on the detailed structure of
individual defects and the ways in
which groups of defects can arrange
themselves.3-4 Investigators did not
realize until 1971 that line defects of
unit strength in nematic liquid crystals
could move out of a plane of orienta-
tional order, or "escape into the third
dimension."5 (Nematic liquid crystals
are less ordered than smectic A. In
nematics there is long-range orienta-
tional ordering of the long axes of the
rod-like molecules, but they do not
form layers.) The finding that line
defects can escape, along with increas-
ing interest in defects in gauge theories
and in more complicated order para-
meters such as those occurring in su-
perfluid helium-3, led researchers in
France6 and the Soviet Union7 to dis-
cuss the singular defects in terms of the
topological arguments of homotopic
groups, which we will examine later.
As we shall see, one can use such
arguments to classify defects in nema-
tic liquid crystals, while the classifica-
tion of defects in smectics and choles-
terics requires a combination of
topological and geometrical argu-
ments.

As researchers obtain a better under-
standing of the nature of defects in
liquid crystal phases, they are gradual-
ly realizing that defects may be impor-
tant in the statistical mechanics of
phase changes. This is particularly
true for the two-dimensional cases that
Ronald Pindak and David Moncton dis-
cuss in their article on page 56, but it

may also be so for the transition from
the smectic-A phase to the nematic
phase.8 In addition, stable arrays of
line defects have been proposed as a
description of the so-called "blue
phases" of cholesterics,9 which we will
discuss later.

Nematic phase defects
One characterizes the nematic phase

by the direction of orientation of the
long axes of the rod-like molecules.
Because this direction may vary from
place to place in a sample, we write the
director as a function of position: n(r).
At defects in the liquid crystal, the
director cannot be defined uniquely.
There are two main classes of defects,
or singularities: line defects, which are
lines along which n cannot be deter-
mined, and point defects, which are
points where n cannot be determined.
Because the ends of the molecules are
not distinguished, n and — n are equi-
valent. This equivalence essentially
determines the only line defect that
can exist.

Nematic line defects are referred to
as disclinations10 to indicate discontin-
uities in the "inclination" of the mole-
cules. One commonly discusses these
defects in terms of their behavior in the
plane perpendicular to the line. A
defect is said to be of strength S if on
moving around a closed path in that
plane the director rotates by S multi-
ples of 2w. Because n and - n are
equivalent, half-integer values of S are
allowed. Sir Charles Frank has called
such half-integer defects "Mbbius de-
fects" because they have the same to-
pology as a Mobius strip. Figure 2
shows a disclination of strength + xk
"frozen" into a liquid crystal by poly-
merization.11 The central region, or
core, of the disclination is the fine
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thread running through the material.
Because the elastic energy density in-
creases inversely with the square of the
distance as one approaches the center
of the defect, there is an isotropic core
region at the center of the thread. This
isotropic region is estimated to be on
the order of 50-100 A in radius. One
observes defects of strength ± %, but
they are not as common as one might
expect from the fact that the energy
scales as S2.

Figure 3 shows line defects of
strength + 1. One identifies these de-
fects by the four dark brushes that
become visible when the sample is held
between crossed polarizers for observa-
tion. In the picture, the string of bub-
bles generated when the liquid crystal
floats on diethylene glycol indicates the
behavior of the director.12 This photo-
graph shows two important effects.
The first is that the core region of the
defects is quite large. The reason for
this is that defects with integral values
of S can "escape into the third dimen-
sion," that is, the director can simply
rotate to lie along the line in the
central region, obviating the need for a
core.5 Thus, lines of integral S are not
singular. The second important fea-
ture in Figure 3 is that the + 1 and — 1
lines cancel the long-range elastic ef-
fects of one another. Ignoring the re-
gion of "escape," this cancellation gives
rise to an attractive interaction
between them. The force per unit
length between two lines varies as the
reciprocal of their separation.3 The
strings are oriented by the elastic
forces of the nematic.

A disclination line of unit strength
can break up into two lines of half-
order strength. Because the line of
strength 1 reduces its elastic energy by
escaping, it can be favored energetical-
ly over two half-order lines.

Point defects, such as those shown in
figure 4, are another class of defects in
nematic liquid crystals. One sees these
defects in capillary tubes where the

Focal conic defect texture of liquid crystals
in the smectic-A phase. The domains, which

are on the order of tens of microns in size,
become visible when the sample is placed

between crossed polarizers. Each domain is
a smectic-A layer suspended between a pair
of conic-section curves that have a common
focus. The crosses visible in the photograph

occur where pairs of curves cross. The
cholesteric phase also features

focal conic defects, as the cover
and figure 6 show. Figure 1
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Thin-thread defect "frozen" by polymeriza-
tion in the nematic phase and placed between
crossed polarizers for observation. As the
schematic diagram below shows, in the region
of the thread each slice of the sample contains
a point at which the direction of the long axes
of the molecules varies discontinuously. The
thin-thread defect is the locus of such singular
points. Figure 2

Thin thread

boundary condition is that A is radial at
the surface, and where A escapes in
opposite directions in different parts of
the capillary.13 The two point defects
in the figure are of opposite sign in the
sense that they cancel each other's long
range elastic fields. The total energy
stored in the elastic field around a
point defect grows linearly with the
radius of the volume enclosed. Conse-
quently, two defects have an interac-
tion energy that grows linearly with
separation. In this respect, they act
like quarks interacting through a gluon
field.

In addition to the three-dimensional
nematics, one can consider a thin film
of smectic-C liquid crystal (a layered
structure in which n is oriented at an
angle with respect to the layer planes)
to be a two-dimensional nematic in the
plane of the film. In such films only
disclinations of integral strength can
exist. Some suggest that pairs of these
disclinations dominate the statistical
mechanics near the "nematic" to "iso-
tropic" (really smectic-C to smectic-A)
transition similar to the two-dimen-
sional superfluid case.14

Topological analysis
Although we have learned much

about nematic defects from optical stu-
dies, from solutions to elastic equa-
tions, and from simply drawing pic-
tures, only in the last few years have
researchers used topology to intro-
duce67 a general scheme for classifying
defects into condensed-matter physics.
The classification of defects in nematic
liquid crystals represents a straightfor-
ward example of the applications of
homotropic group theory. The applica-
bility of homotropic theory becomes
much less obvious for liquid-crystal
phases with more complicated order
parameters. We will discuss some of
these phases in the following sections.

Here we give a very simplified discus-
sion of the application of the theory to
nematics. Those interested in greater
detail might want to consult N. David
Mermin's review of the subject.15 One
can quantify the "texture" of a nematic
by specifying the orientation of the
director at each point in the liquid.
The set of all possible director orienta-
tions can be thought of as the set of
points on a unit sphere. A configura-
tion where the director is constant
throughout a sample corresponds to a
single point on the sphere and is called
the uniform configuration. Because of
the symmetry between n(r) and — ft(r),
the fundamental set of allowed values
of A (denoted by V) lie on a hemisphere
as shown in figure 5. We can think of
the definition of a texture in real space
as a mapping of the points in real space
(r) onto the fundamental order-param-
eter space, V. The topological ap-
proach to the problem of classifying

defects, then, is to study the classes of
such mappings.

To determine the possible line de-
fects, one considers all possible map-
pings of closed lines onto the order-
parameter space, V. Two mappings are
said to be in the same homotopic class if
they can be continuously deformed into
one another. Closed lines in real space
that map into closed lines on the sur-
face of the hemisphere of allowed val-
ues of n (line 1 in figure 5) do not
circumscribe a line defect because the
gradual reduction of the loop size in
real space (r) will map into a vanish-
ingly small loop in V space. The tex-
ture is thus homotopic to the uniform
configuration. That is, the liquid crys-
tal texture can be continuously de-
formed to the uniform configuration.
The region between the two singulari-
ties in figure 4 is such a texture.

For a vector field such as occurs in
ferromagnetic materials, V is the
whole sphere. In such a case only
closed loops exist and there are no line
defects. For nematics, however, there
is a second class of mappings, which
corresponds to lines joining pairs of
diametrically opposite but physically
equivalent points on the hemisphere
(line 2 in figure 5). Such mappings are
continuous in real space because of the
equivalence between n and — n. This
class of mappings represents the direc-
tor configuration around a line defect
of strength V2, such as the thread in
figure 2. It is easy to convince yourself
that all maps fall into one of these two
classes. Thus there is only one funda-
mental line defect in nematics.

These topological arguments regard-
ing line defects in nematics do not
reveal much that is new. For example,
we have known for some time that all
defects of strength V2 are equivalent,13

and the discussion of the absence of an
S = 1 line in terms of the escape into
the third dimension is not new. How-
ever, topological arguments do give a
systematic approach and reassurance
that higher-order lines do not exist.

We can examine point defects in a
similar fashion by considering the map-
pings of spheres surrounding the defect
into the order-parameter space V. It
turns out that the number of times the
sphere in V is "covered" by the map-
ping can serve as an index of point
defects. Thus, there are an infinity of
possible point defects. Energetically, it
is unlikely that defects that have a
covering greater than one exist, and
indeed they are not observed.

We can make these topological argu-
ments more rigorous and sophisticated.
The classes of mappings of loops form a
group known as the fundamental group
of the mapping. The multiplication
properties of the fundamental group
determine the way in which defects
combine.15 The group for the nematic
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ordering, for example, is a two-element
Abelian group. As we shall discuss,
non-Abelian fundamental groups occur
for the cholesteric phase and for biaxial
nematics.

Smectic-A defects
We can properly describe the defects

of the smectic-A phase of liquid crystals
using geometrical arguments rather
than topological arguments. In this
sense, smectic-A defects represent an
opposing extreme to nematic defects,
where topology gives the correct classi-
fication. Smectic-A phases are layered
phases in which the director n(r) of the
molecules is perpendicular to the lay-
ers. The dominant parameter govern-
ing the deformation of material in the
smectic phase is the energy required to
change the layer spacing. In macro-
scopic defects, the spacing must be kept
constant. This constancy tells us some
geometrical characteristics of the possi-
ble defects because it implies that
neither twist (n -yxn) nor bend
[ftX(VXn)] distortions are allowed.
Thus textures in the smectic-A phase
consist of pure splay (v-n^O). A de-
fect, or singularity, with pure splay has
the director pointing radially outward.
We can imagine both a line disclination
and a point defect with this property.
In smectic-A liquid crystals, the disclin-

ation of strength 1 does not escape.17 In
general, the normal to a layer exhibits
pure splay if the major radii of curva-
ture of the layer surface do not vary
along their respective major axes.
Such considerations lead to a descrip-
tion of the possible singularities in
terms of equally spaced surfaces known
as "Cyclides of Dupin," which in their
most general form are the focal-conic
singularities that figure 1 shows.216

Focal conic defects, as we said ear-
lier, appear as confocal pairs of conic-
section curves. All focal-conic singu-
larities are a generalization of the pair
of defect lines that one gets by taking
equally spaced smectic-A layers, wrap-
ping them into concentric cylinders,
bending the result into a torus and then
adding more and more equally-spaced
layers, going beyond the stage where
the hole of the torus vanishes. (The
result has a cross-section that looks like
a topographical map of twin conical
mountain peaks.) One of the resulting
defect lines is the circular axis of the
torus. The other one is the line normal
to the plane of this circle, passing
through its center; an infinity of direc-
tors meet along this line in a conical
fashion.

In the focal-conic generalization of
this texture, the circle becomes an el-
lipse and the straight line a hyperbola

that shares a focus with the ellipse.
The crosses in figure 1 occur at the
intersections of the ellipses and the
hyperbolas when they are projected
onto a plane. Note that in the focal
conic texture, such as shown in figure 1,
only the conical volume whose base is
the ellipse and whose peak lies some-
where on the hyperbola occurs. The
extensive studies of focal conic defects
have included the studies of parabolic
focal conic arrays induced by dilation of
the lyotropic layers discussed by Peter
Pershan in this issue (page 34).

In addition to focal-conic singulari-
ties, smectic liquid crystals exhibit edge
dislocations in the layer spacing—a
layer can be added that does not extend
throughout the liquid.18 Such edge dis-
locations are difficult to observe be-
cause the layers are typically 30 A or
less in thickness. The introduction of
edge dislocations allows some bend in a
texture if the boundary conditions re-
quire it.3

Topologically, one might expect to be
able to describe smectic-A singularities
in a fashion similar to those in nema-
tics. Locally, the molecular order of
the smectic A is described by the direc-
tor n and a phase that indicates the
position in the layer. Thus, the smec-
tic-A order-parameter space is a pro-
duct space of the hemispherical shell of

A pair of disclinations, or discontinuities in the "inclination" of the
molecules, show up in this nematic liquid-crystal sample that is held
between crossed polarizers for observations. Strings of liquid beads,

generated at the interface between the liquid crystal and another
liquid, reveal the director field—the directions of the long axes of the
molecules.12 Figure 3
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the nematic with another space that
describes the layering. One can most
easily think of this latter space as a
ring; positions on the ring specify the
phase of the layers. Possible smectic-A
line defects separate into two classes.
Defects involving n are the same as in a
nematic while those involving the
phase are the edge dislocations dis-
cussed above. However, disclinations
of the nematic type cause a change in
the layer spacing that does not decay at
large distances from the singular line.
Topological arguments therefore pre-
dict singularities that are energetically
not allowed and which do not occur. In
addition, these arguments do not pre-
dict the dominant defect seen—the fo-
cal conic. These omissions occur be-
cause the requirement for constant
layer spacing is a geometrical con-
straint, which is much more restrictive
than the continuous deformations re-
quired by the classification of mappings
in topology.16 As we shall see, the
cholesteric phase is intermediate
between the smectic and nematic in
this regard.

Cholesteric phase defects
In the uniform cholesteric the mole-

cules twist about an axis perpendicular
to the director with a definite pitch p
that is typically on the order of a few
thousand angstroms. (The pitch is the
distance along the axis corresponding
to a 360° rotation of the director, as the
figure on page 40 shows.) Thus to
specify the texture of a cholesteric one
must specify at each point in space, the
director n, the twist axis t and the
pitch. Both n(r) and t(r) are unit vec-
tors.

If we consider the pitch to be a
constant, then we can define n(r) as:

n(r) = no(r) cos[(2n7p)tr]
+ no(r)xt(r) sin[(2Wp)tr]

where at each point in space we have
specified an orthogonal set of coordi-

Point defects in nematic liquid-crystal
material in a capillary tube. The tube is held
between crossed polarizers and illuminated
with monochromatic light. In the center of
the cylinder, the long axes of the molecules
are aligned with the axis of the cylinder;
however, at the walls the director is radial.
Point defects are places where the director
"escapes" in opposite directions along the
cylinder's axis. Figure 4

nates n0, t and_noxt. Then the func-
tions no(r) and t(r) should vary slowly
compared to the scale of the pitch.
Note that because n and — n are equi-
valent, so are n0 and — n0, and t and
— t. This description reduces the cho-
lesteric to a biaxial nematic at
least from a topological point of view.

In a biaxial nematic our orthogonal
set of coordinates would be the major
axes of the dielectric tensor e. The
order-parameter space is then the set of
all rotations in three dimensions,
SO(3), reduced by the symmetry rela-
tions of the axes. The mappings of
loops in order-parameter space give
rise to a description of the line singular-
ities in terms of the quaternion group,
whose five elements we can represent
by the three Pauli matrices, the identi-
ty matrix and its negative. Conse-
quently, there are three line defects, r,
A and ^, involving 180° rotations about
the three inequivalent axes, and a class
of line defects of equivalent 360° rota-
tions.47 The so-called T{180°) line is a
defect in which AoXt is the axis about
which the coordinate system rotates.
The /t(180°) line has n0 as the axis of
rotation. The third line, conventional;
ly called %, involves a rotation about t
and is simply a strength-1/^ nematic
disclination (as shown in figure 2) in
which the director twists about t. Be-
cause there is an orthogonal set of axes,
one cannot rule out a strength 1 or 360°
singular line as one could in the nema-

tic phase. However, the continuous
deformations of the director that are
equivalent to "escape" into the third
dimension make all 360° lines equiva-
lent.

Cholesteric line defects are particu-
larly interesting because the quater-
nion group is non-Abelian, a property
that has many interesting conse-
quences when one considers combining
defects or entanglements of defects.15

Unfortunately, this description suffers
at least partially from the same diffi-
culty as the topological description of
smectic A.

Some of the possible arrangements of
either the l o r r defects have elastic
energies that increase with volume be-
cause the pitch is modified out to very
large distances from the core of the
disclination. Although this energy is
smaller here than in smectics, it never-
theless is clearly prohibitive as isolated
A and r lines do not exist in nature, as
far as we are aware.

A proper description of the choles-
teric, therefore, is similar to that of the
smectic as far as the constraint of
constant layer spacing is concerned.
Indeed, cholesterics show focal conic
structure similar to smectics. (See the
cover photo.) Because the pitch is often
in the visible region of the spectrum,
one can see the line singularity in more
detail, as illustrated by figure 6, which
shows a focal conic defect sliced close to
one of the conic-section lines. The line
along which the layers rapidly bend in
this figure is very nearly the hyperbola
characteristic of the focal conic.

In addition to focal conic defects,
cholesteric liquid crystals show edge
dislocations in which a twist with an
extra multiple of n is introduced. Fig-
ure 6 shows one such edge dislocation
near the lower left-hand corner where
three lines merge into one. Such dislo-
cations are among the most common,

Hemisphere of allowed directors. A nematic liquid crystal texture is a set of molecular
orientations, which one can represent by a mapping onto a hemisphere. Each orientation
corresponds to a point on the hemisphere. Only two kinds of topologically distinct closed curves
can be drawn on this surface: loops (the line labelled 1) and lines that join a pair of diametrically
opposite but physically equivalent points (the line labelled 2). Figure 5

52 PHYSICS TODAY / MAY 1982



probably because A defects are not sin-
gular energetically. In analogy to the
description of dislocations in crystals,
we can describe edge dislocations in
terms of bound pairs of disclinations.

The cholesteric phase is different
from the smectic phase in that it is
strongly anisotropic in the planes of the
layers because the true local anisotropy
axis is the director. Thus, there can be
X defects3 that in any given plane are
simply nematic defects of strength V2
and 1. The intralayer anisotropy also
excludes the possibility of point singu-
larities in which the layers form con-
centric spheres. This prediction is a
result of the topological arguments giv-
en above. Thus, as far as defects are
concerned, we can perhaps best think
of the cholesteric liquid crystal as a
smectic with an in-plane nematic be-
havior similar to that of the smectic-C
phase, where the long axes of the mole-
cules tilt at an angle with respect to the
layer spacing.

Cholesteric blue phases

An interesting phenomenon in cho-
lesterics is the appearance of the "blue
phases" when the temperature is suffi-
ciently close to that of the cholesteric-
isotropic phase transition. Blue
phases—there are three of them—were
observed when liquid crystals were
first discovered in the last century.20

These phases exhibit a three-dimen-
sional, cubic periodic variation on the
scale of the cholesteric pitch,2122 when
the pitch is shorter23 than 7000 A.
Figure 7 shows a micrograph of a typi-
cal blue phase. Because of their three-
dimensional structure, these phases ex-
hibit many of the characteristics of
ordinary crystals. Some authors think9

that at least one of the blue phases
involves cubic arrays of disclinations of
strength - V2.

The existence of the blue phases is
related to the handedness, or chirality,
of molecules in cholesterics.24 For the

Inside a focal conic defect in a cholesteric
liquid-crystal polymer." This slice through
the defect is shown as it appears when held
between crossed polarizing filters. The
distance between two "stripes"—about 2
microns here—is a half pitch, as illustrated in
the figure on page 40. This is the cholesteric
analog of the smectic layer. As the
cholesteric planes turn to line up with the
polarizers, the contrast changes. A strong
maximum in the twist axis occurs at A. The
further the slice is from the focal line, the
weaker this curvature. At I there is a
dislocation composed of two X defects, of
strength Y2 and - V2. Figure 6

present purposes, we can think of
chiral molecules as screws that pack
together more tightly if their long axes
are tilted slightly relative to one an-
other. In the cholesteric phase this
tilting occurs in only one direction, but
locally the molecules could lower their
free energy if the tilt were in two or
more directions. Thus, ideally, chiral
molecules would like to twist doubly
everywhere. However, it is topological-
ly not possible for the director to twist
doubly everywhere in space. Therefore
the regions of double twist are compen-
sated by singular lines.9 Theoretical
work on various cubic structures ap-
pears consistent with experimental ob-
servations.9'2223 The blue phases may
be rare examples in nature of ordered
arrays of defects that are thermody-
namically stable.

Besides the four phases that we have

The blue phase in
a cholesteric liquid-
crystal sample held

between crossed
polarizers. When

the cholesteric
pitch is less than

7000 A, and when
the sample is very

close to the
transition to the

isotropic phase, the
cholesteric

transforms to this
platelet texture,

which is optically
active but isotropic.
The platelets are a
cubic arrangement

of cholesteric
defects. The small
pits at the platelet
surface and grain

boundaries are
points where
dislocations

emerge.
(Photography

courtesy of Matthew
Marcus.) Figure 7

discussed in this article—nematic,
smectic A, cholesteric and cholesteric
blue—there are a number of other
phases—smectic C, discotic, and biaxial
nematic—which exhibit different sets
of defects. In addition, surfaces can
induce new classes of defects depending
on the boundary conditions that they
impose on the order parameter. This
allows us to study a rich variety of
defects that have analogs in other
fields. For example, the algebra of line
defects of biaxial nematics is similar to
that of three colored quarks, and, as we
noted earlier, the force between point
defects in nematics is independent of
distance as are the forces between
quarks induced by the gluon field. The
defect structures of biaxial nematic
liquid crystals are similar to, although
not the same as, the superfluid-A phase
of helium-3.

Studies of these diverse systems have
enhanced our understanding of liquid
crystals and vice versa. One of the
important lessons is that even though
topological theory gives a beautiful de-
scription, it must be confronted with
geometrical constraints.16 For exam-
ple, the famous point-singularity, or
"boojum" structure of He3(A) proposed
for cholesterics, has not been observed
experimentally. Lewis Carroll may
have anticipated this when he wrote in
The Hunting of the Snark,

Then the ominous words "It's a
Boo—"
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Then, silence. Some fancied they
heard in the air

A weary and wandering sigh
That sounded like "—jum!" but the

others declare
It was only a breeze that went by.
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